

SIXTH FRAMEWORK PROGRAMME NETWORK OF EXCELLENCE

HYSAFE

Safety of Hydrogen as an Energy Carrier

Contract no.: 502630

Compilation of descriptions of experimental facilities Deliverable 9 (WP 2)

Lead participant:FZJ (report compiled by E.-A. Reinecke)Partners:BAM, CEA, Fh-ICT, FZK, GexCon, HSE/HSL, INASMET, INERIS,
JRC, TNO, UNIPI, WUTDate of preparation:19.11.2004

Dissemination level: PU

SUMMARY

The main goal of the activity Integration of Experimental Facilities (IEF) is the creation of a set of specialised research facilities for jointly define, rank and perform test series related to the thematic structure of the network.

Preparing the progression into a set of complementary specialised research facilities the partners have provided unified detailed descriptions of the facilities available. This compilation of 78 facility descriptions is intended to serve as a starting point for the integrating process that will include

- identifying the best expertise of the partners,
- identifying gaps and the need of further partners,
- enabling the promotion of improvement of the experimental possibilities,
- implementing common quality standards.

The facility descriptions will be published in a modified version on the HySafe-Website as well.

D9 – Compilation of descriptions of experimental facilities

CONTENTS

1	Introduction	7
2	Unified format for the facility descriptions	7
3	Conclusion and further actions	13
Anne	ex - Descriptions of experimental facilities	15
	BAM	17
	CEA	
	Fh-ICT	
	FZJ	57
	FZK	67
	GexCon	81
	HSE/HSL	103
	INASMET	119
	INERIS	
	JRC	
	TNO	
	UNIPI	
	WUT	

1 Introduction

Integration of Experimental Facilities (IEF) is one of the integrating activities within the network HySafe aiming at the integration of experience and knowledge on hydrogen safety in Europe as well as at the integration and harmonisation of the fragmented research base. The creation of a set of specialised research facilities is the main goal of IEF in order to enable the network for jointly define, rank and perform test series. Research facilities are needed for investigation of relevant phenomena, for testing devices and concepts as well as for validation of numerical models.

The main task of WP2 during the first 18 months of the network is to prepare the basis for future integration of the experimental possibilities of the partners. As a first step, the partners have prepared detailed descriptions of the facilities available for carrying out specific tests and experiments related to the thematic structure of the network. The unified format as described in Deliverable D5 has been used. This compilation is intended to be the first step to a better knowledge of each other and will also assist WP7 work.

2 Unified format for the facility descriptions

In order to provide an overview of the experimental possibilities of the partners, a unified format for the descriptions of the experimental facilities has been developed as documented in deliverable D5. The document is divided into the sections

- Overview,
- Technical details,
- Experiments Equipment,
- Information for the preparation of integration.

Table 1 gives on the next pages an overview of the 78 facilities to be integrated in HySafe, demonstrating the great variety and the wide range of the experimental possibilities of the HySafe partners. The application fields correspond to the HySafe matrix

- H1 Production,
- H2 Transport and distribution, refuelling stations,
- H3 Storing H2,
- H4 Vehicles powered with H2,
- H5 Tunnels, public parking and private garage,
- H6 Utilisation, portable and stationary H2 based applications,

and

- V1 Hydrogen release, mixing, and distribution,
- V2 Fires, ignition and explosions,
- V3 Mitigation techniques,
- V4 Safety assessment and risk analysis,
- V5 Standardisation and legal requirements.

		Name	Туре	Scale	Experiments	Appl.Field
BAM	BAM-1	Fire Testing Rig	open propane gas fire	full scale	test of the behaviour of pressurized or	H2-H5/
					protective containers under fire load	V1-V3
BAM	BAM-2	Open Air Test Site Horstwalde	open air test site	large scale	fire, drop, impact and other tests for	H2-H6/
					flammable, pressurized or otherwise	V1-V3
BAM	BAM-3	Hydraulic Cycling Equipment	-	full scale	investigation of pressure receptacles	H2-H4/
					under pulsating pressure load	V4-V5
BAM	BAM-4	Facility for testing and	test gas mixture system and	laboratory	testing and calibration of gas sensors	H4-H6/
		calibration of gas sensors	test chamber	scale		V1,V2,V4
BAM	BAM-5	Tribometers for oscill. (PT1) or	PT1, CT2, CT3	lab scale	friction and wear at elevated press. or at	H4/
		sliding friction (CT2, CT3)			cryog. temperatures / in cryog. Liquids	V3-V4
CEA	CEA-1	MISTRA	cylindrical steel vessel	1/10th of PWR	H2(He) release and distribution in	H5/
				cont.	confined geometry	V1
CEA	CEA-2	GAMEL (under construction,	cubic polycarbonate vessel	small scale	detailed studies of H2 (simulated by He)	H2-H5/
		available in 2005)			rel. and distr. in a 3D conf. geometry	V1
Fh-ICT	ICT-1	Heatable high pressure vessel	vessel	small scale	decomposition and ignition induced by	V2
					temperature increase and external ign.	
Fh-ICT	ICT-2	Device for flame jet ignition	cylindrical vessel with vent opening	large scale	flame jet ignition	V2
Fh-ICT	ICT-3	High pressure vessel with	1 litre high pressure vessel	small scale	explosions with init. press. up to 3 MPa	V2
		windows	with windows		and time resolved spectroscopic meas.	
Fh-ICT	ICT-4	Test stand	closed test stand with blow-	full scale	multipurpose tests with energetic	V2
			out option		materials	
Fh-ICT	ICT-5	Testing area	open-air	full scale	explosions, tank testing, H2 release,	H3-H5/ V1, V2
Fh-ICT	ICT-6	Fast Online Spectroscopy	NIR to UV-VIS spectrometers	all scales	all kind of exp. where spectral radiation	-
					and temperatures must be acquired	
Fh-ICT	ICT-7	Hydrogen Measurement	fast 12-channel H2	all scales	all kind of exp. where H2 concentrations	-
		System	concentration measurement		must be observed with high time res.	
Fh-ICT	ICT-8	3-axis Positioning System	programmable positioning	all scales	all kind of experiments where position	-
			system		dependent data must be acquired	
Fh-ICT	ICT-9	Gas Mixing Unit	remote controlled 4 gas	all scales	all kind of exp. where well defined (H2)	-
			mixing unit		concentr. or mass flows are needed	
FZJ	FZJ-1	REKO-1	flow reactor	small scale	H2 recombination under forced flow conditions	H5, V3

Table 1: Experimental facilities of the HySafe partners

		Name	Туре	Scale	Experiments	Appl.Field
FZJ	FZJ-2	REKO-2	pressure vessel	medium scale	H2 recombination	H5, V3
FZJ	FZJ-3	REKO-3	flow reactor	medium scale	H2 recombination under forced flow conditions	H5, V3
FZJ	FZJ-4	REKO-4 (under construction)	pressure vessel	medium scale	H2 recombination under natural flow conditions	H5, V3
FZK	FZK-1	A1 Vessel	cylindrical vessel	full/large scale	turbulent combustion and detonations, integrity of mechanical structures	H2-H5/ V1-V3
FZK	FZK-2	A3 Vessel	cylindrical vessel	full/large scale	turbulent combustion and detonations, vented explosions, H2 distribution	H2-H5/ V1-V3
FZK	FZK-3	A6 Vessel	cylindrical vessel	full/large scale	turbulent combustion and detonations, integrity of mechanical structures	H2-H5/ V1-V3
FZK	FZK-4	12 m detonation tube (DT)	cylindrical tube	medium scale	turbulent combustion, DDT and steady state detonations, chemical kinetic	H2-H5/ V1-V3
FZK	FZK-5	Flow Test Chamber (TC)	rectangular chamber	full/large scale	vented combustion and detonations; H2 distribution, testing of ventilation syst.	H2-H5/ V1-V3
FZK	FZK-6	Partially Vented Explosion Tube (PET)	cylindrical tube with variable opening	medium scale	vented explosions, turb. flame propag., flame acceleration and DDT	H2-H5/ V1-V3
GexCon	GC-1	168 m ³ open geometry with internal obstructions	explosion vessel	large scale	explosions in open, congested geometries	V2,V3
GexCon	GC-2	1:3.2 scale offshore module	explosion vessel	large scale	vented explosions in realistic geometries	V1, V2, V3
GexCon	GC-3	Connected vessels	explosion vessel	small scale	explosions in vented vessel	V2,V3
GexCon	GC-4	6m channel	explosion vessel	large scale	vented explosions in idealised geometries	V1, V2, V3
GexCon	GC-5	50m ³ tube	explosion vessel	large scale	dispersion/explosions in closed/vented vessel (tunnels)	H2, H5/ V1, V2, V3
GexCon	GC-6	1.2 m ³ closed vessel	explosion vessel	small scale	explosions in closed vessel	V1, V2, V3
GexCon	GC-7	216 litre dispersion vessel	dispersion/explosion vessel	small scale	gas dispersion/homogeneity	V1
GexCon	GC-8	20 litre spray vessel	explosion vessel	small scale	explosions in closed vessel	V2, V3

Table 1 (contd.): Experimental facilities of the HySafe partners

		Name	Туре	Scale	Experiments	Appl.Field
GexCon	GC-9	1.4 m channel	explosion vessel	small scale	vented explosions in idealised geometries	V2, V3
GexCon	GC-10	3D corner	explosion vessel	small/large scale	vented explosions in complex idealised geometries	V2, V3
HSE/HSL	HSL-1	Ventilated dispersion and explosion facility	modular vented enclosure with integrated ventilation	full scale	dispersion/ignition/explosion from high pressure releases into ventilation flow	H1-H6/ V1, V2
HSE/HSL	HSL-2	Gas dispersion facility	gas dispersion area	full scale	dispersion of flashiong liquid or gas (LPG, H2)	H1-H6/ V1, V2
HSE/HSL	HSL-3	Jet fire facility	LPG vapour jet fire facility	full scale	PFP material and components testing, Jet-Fire Resistance Test (JFRT)	H1-H6/ V1. V2
HSE/HSL	HSL-4	Hydrogen jet release facility	gas supply and pipe work to enable pressurised releases	full scale	ignited and unignited jet releases	H1-H6/ V1, V2
HSE/HSL	HSL-5	366m gallery/tunnel	concrete test enclosure/tunnel	full/large scale	combustion and ventilation controlled overpressures fragmentation	H4, H5/ V1, V2
HSE/HSL	HSL-6	Frictional ignition apparatus	ignition test facility with vented explosion vessel enclosure	full scale	frictional rubbing events in flammable atmospheres, spark and hot surface	H1-H6/ V1, V2
HSE/HSL	HSL-7	Impact test track	impact test facility	full scale	dynamic impact on components/tanks etc.	H1-H6/ V1, V2
INASMET	INA-1	SSRT equipment	autoclave+ tensile testing	lab scale	effect of hydrogen on the behaviour of materials - hydrogen embrittlement	H1-H6/ V3, V4, V5
INASMET	INA-2	NACE TM 01-77 testing equipment	corrosion cells + load applying rings	lab scale	effect of hydrogen on the behaviour of materials - hydrogen embrittlement	H1-H6/ V3, V4, V5
INASMET	INA-3	Fatigue testing equipment	Servohydraulic universal tensile testing machine	lab scale	effect of hydrogen on the behaviour of materials in fatigue – corrosion	H1-H6/ V3, V4, V5
INASMET	INA-4	LECO TCH 600	-	lab scale	chemical analysis of hydrogen in metals	H1-H6/ V3, V4, V5
INASMET	INA-5	SHS reactor	-	lab scale	metallic hydride production by SHS	H3
INERIS	INE-1	The "Basket"	large scale test area	large scale	rupturing of confinements and investigation of fracturing and missiles	H1-H6/ V2-V3
INERIS	INE-2	ISO-1 m ³ chamber, Dust-gas explosion room (DG1m3)	vented or closed vessel	large scale	Kst and Kg meas., turbulence/mixing, flame propagation, safety device tests	H1-H3/ V1-V3
INERIS	INE-3	10 m ³ chamber, Dust-gas explosion room (DG10m3)	vented vessel	large scale	turbulence/mixing, flame propagation, safety device tests	H1-H3/ V1-V3

Table 1 (contd.): Experimental facilities of the HySafe partners

		Name	Туре	Scale	Experiments	Appl.Field
INERIS	INE-4	INERIS-100 m ³ chamber, Dust-	vented vessel	large scale	turbulence/mixing, flame propagation,	H1-H3, H5/
		gas explosion room			safety device tests	V1-V3
INERIS	INE-5	Flame Acceleration Pad (FAP)	pipes	large scale	flame propagation in tubes and pipes,	H1-H6/
					vents and flame arrester testing	V1-V3
INERIS	INE-6	Flexible Ignition Facilities (FIF)	small vessel with various	small scale	characteristics of "practical" ignition	H1-H6/
			igniters		sources, fundamentals of flame initiation	V3-V4
INERIS	INE-7	High pressure-high tempera-	closed vessel	large scale	flammable limits, auto-ignition delay,	H1-H4/
		ture-2 m ³ sphere (HPT2m3)			explos. param. (high press. and temp.)	V1-V3
INERIS	INE-8	High presshigh temp. 500ml	closed vessel	small scale	max. press. meas. at very high press.	H1-H4, H6/
		expl. chamber (HPT500ml)			and temperatures, ignition behaviour	V2-V3
INERIS	INE-9	Open Fire Area (OFA)	large scale test area	large scale	ignition and fire of gaseous jets and liquid	H1-H6/
					pools	V1-V3
INERIS	INE-10	Unconfined Cloud Area (UCA)	large scale test area	large scale	flammable gases and liquids releases	H1-H6/
					from high press. tanks, unconfined expl.	V1-V3
JRC	JRC-1	AMC Gas Reaction Controller	volumetric absorption	lab scale	hydrogen storage material testing	H2, V5
			measurement apparatus			
JRC	JRC-2	Gravimetric analyser	gravimetric absorption	lab scale	hydrogen storage material testing	H2, V5
			measurement apparatus			
JRC	JRC-3	SenTeF	environmental chamber for	lab scale	sensors performance testing	H2, H4, H5/
			explosive/toxic gases			V3, V5
JRC	JRC-4	SYSAF bunker	N2-inertised room with	small/full scale	high-pressure cycling and permeation	H2-V4, H3-
			pressure vessels		measurements on compressed H2/CH4	V4, H3-V5
TNO	TNO-1	1 litre vessel	closed bomb	lab scale	measure explosion limits and ignition	H1-H6/
					temperatures and energies	V2, V4, V5
TNO	TNO-2	20 litre vessel	closed bomb	lab scale	measure explosion limits and ignition	H1-H6/
					temperatures and energies	V2, V4, V5
TNO	TNO-3	500 litre vessel	closed bomb	lab/pilot scale	measure explosion limits and ignition	H1-H6/
					temperatures and energies	V2- V5
TNO	TNO-4	1 m ³ vessels	vessel (closed bomb)	small scale	closed bomb experiments with high initial	H1-H6/
					press. and linked vessels	V2- V5
TNO	TNO-5	5 m³ vessel	vessel (closed bomb)	medium scale	test of equipment and protective systems	H1-H6/
					for use in explosive atmosph.	V2- V5
TNO	TNO-6	GEC	cubic shaped vessel	large scale	test constructions that can reduce or	H1-H6/
					protect against explosion overpressures	V1- V5

Table 1 (contd.): Experimental facilities of the HySafe partners

		Name	Туре	Scale	Experiments	Appl.Field
TNO	TNO-7	IBBC Bunker	reinforced concrete bunker	large scale	vented gas explosions	H1-H6/ V1- V5
TNO	TNO-8	FAST	open air gas explosion facility	large scale	gas explosions in open air; flame propagation and blast wave experiments	H1-H6/ V1- V5
TNO	TNO-9	GEFEF	flow reactor	small scale	integrated studies on explosion control and process optimisation	H1, H4/ V4, V5
TNO	TNO-10	Small scale blast simulator	long tube	small scale	interaction of shockwaves with structures	H1-H6/ V2, V4, V5
TNO	TNO-11	Large scale blast simulator	long tube	medium scale	blast wave response in atmosphere	H1-H6/ V2, V4, V5
TNO	TNO-12	Laboratory for ballistic research (LBO)	internal firing ranges and a massive target bunker	medium scale	kinetic energy projectiles can be fired at targets	H1-H6/ V2, V4, V5
TNO	TNO-13	Test Facility 3 (TF3)	H2/O2 igniter test facility	full scale	testing small rocket motors, igniters, combustors etc. requiring H2 or O2	H2, H3, H6/ V2, V3
TNO	TNO-14	Large indoor rocket test stand	rocket test facility	full scale	testing large rocket motors etc. and activities like cobustion research etc.	H2, H3/ V2, V3
UNIPI	UP-1	CVE	vented room	large scale	vented explosions	V1, V3, V5
WUT	WUT-1	WUT Detonation Tube	square cross-section tube	lab scale	H2 fast deflagrations, detonations, DDT, explosion initiation, mitigation of	H1-H4/ V2,V3

Table 1 (contd.): Experimental facilities of the HySafe partners

3 Conclusions and further steps

Deliverable D9 finishes formally the tasks of the IEF activity for the first 18 months of the project. Next steps will be

- identifying the best expertise of the partners
- identifying gaps and the need of further partners
- enabling the promotion of improvement of the experimental possibilities
- implementing common quality standards.

Especially the results from the MPA activity as well as input from the vertical and horizontal JPA activities will be taken into account.

Furthermore, the facility descriptions will be published in the HySafe-Website in a modified version taking mainly into account the technical points.

Annex - Descriptions of experimental facilities

Partner: BAM

Facilities: - Fire Testing Rig

- Open Air Test Site Horstwalde
- Hydraulic Cycling Equipment
- Facility for testing and calibration of gas sensors
- Tribometers for oscillating (PT1) or sliding friction (CT2, CT3)

Name	Fire testing rig for tanks and other pressure vessels or other equipment for dangerous goods
Туре	open propane gas fire
Scale	full scale
Experiments	test of the behaviour of pressurized or protective containers under fire load
Application field	H2-H5, V1-V3

Technical details

Dimensions	size of test object (max.): 8 m x 3 m x 3 m (LxWxH); mass of test object (max.): 100 t
Temperatures	1100 °C
Fire Intensity	adjustable from 50 to 110 kW/m² energy input, depending on test object size
Fuel	LPG
Special features	The flame configuration can be adapted to the test object in such a way that it is completely engulfed in flames. A wide variety of fire situation options can be simulated by means of fire intensity controls

Experiments – Equipment

Experiments	behaviour of pressure vessels and other appropriate objects in a hydrocarbon fire
Instrumentation	fire intensity and size can be adapted to the test object
Schedule	by agreement

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Depends of the experiment

What kind of movable equipment is available and could be shared?

This test rig is not transportable at all; there is, however, a smaller movable rig especially for gas cylinders.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Wood instead of propane fire

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	Open Air Test Site Horstwalde
Туре	open air test site
Scale	large scale
Experiments	fire, drop, impact and other tests for flammable, pressurized or otherwise dangerous goods or vessels containing them
Application field	H2-H6, V1-V3

Technical details

Dimensions	The whole test site is a territory which extends over ca. 12 km ² , with various test installations at different places. The most prominent feature is an explosion test site of 400 m diameter (photo) which is equipped with an observation shelter and other basic infrastructure. The site is capable of fire and explosion tests up to an equivalent (NEQ) of 150 kg TNT.
Special features	It is difficult to find a place which is remote enough for large scale

Special features It is difficult to find a place which is remote enough for large scale experiments and has at the same time the infrastructure necessary for scientific work.

Experiments – Equipment

Experiments	The site is appropriate for almost any kind of experiment which fits into the given space. Among the tests performed regularly by BAM are fire tests with packages of explosives and other dangerous goods as required by transport law. A spectacular test done once involved firing a railway car filled with propane until it burst.
Instrumentation	Basic infrastructure is provided. Experimentators are required to bring their specific scientific instrumentation with them.
Schedule	on agreement
Further particulars	The test site is close to the village of Horstwalde which is about 50 km south of Berlin.

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Depends of the experiment

What kind of movable equipment is available and could be shared?

Basic fixed infrastructure is provided and can be used.

• To prepare filling possible gaps

_

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The facility will not be modified since it is already very flexible

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	Hydraulic Cycling Equipment
Туре	-
Scale	full scale
Experiments	investigation of pressure receptacles under pulsating pressure load
Application field	H2-H4, V4-V5

Technical details	
Dimensions	test receptacles up to 4000 mm length and 800 m diameter
Temperatures	-60 +90 °C
Pressure	between atmospheric and 1200 bar, up to 30 pressure cycles per minute, stroke volume up to 6 l
Media	test objects are filled with a water-glycole mixture
Special features	unique in Europe

Experiments – Equipment

Experiments	Pressure receptacles are subjected to cyclic pressure load as required by the user of the regulation. Life time assessment or fatigue strength can be observed. Both metallic and composite receptacles can be tested.
Level of detail	pressure deviation ±10 bar at a test pressure of 1200 bar
Instrumentation	pressure, temperature, volume change
Schedule	by agreement
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

For test preparation and start depending on the experiment; test can run automatically part of the time.

What kind of movable equipment is available and could be shared?

none

-

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Name	Facility for testing and calibration of gas sensors	
Туре	test gas mixture system and test chamber	
Scale	laboratory scale	
Experiments	testing and calibration of gas sensors	
Application field	H4-H6, V1,V2,V4	

Technical details

Dimensions	Facility: approx. 2.0 x 1.0 x 0.8 meters Test chamber approx. 2.5 litres volume These test chambers are equipped with five (or up to ten) sensors of different types and provide for measurement of gas temperature between -40 °C +180 °C. Two test chambers have been developed, optimised for a small and a larger volume, respectively, and accurately defined gas flow.
Temperatures	- 40 to +180 °C
Pressure	Test chamber 0.8 to 1.3 bar
Media	hydrogen, air, water vapour and up to 3 other gases (e.g.CO ₂ , SO ₂ , NH ₃ , propane…) and up to 2 other vapours (e.g. ethanol, isooctane)
Special features	Reliable and accredited method by using certified gas mixtures and calibrated electrical measuring devices. A sophisticated gas handling and control systems allows simulating real ambient conditions (complex gas mixtures, humidity, altitudes,) designed in view of testing and calibrating sensors.
Further particulars	Gas sensors are calibrated and tested using a test system where test gas mixtures of defined composition are generated dynamically from appropriate parent gases in cylinders. These test gas mixtures are transferred into test chambers containing the sensors under investigation. The gas blending system provides for continuous variation of mixture composition, including humidification, at a high dynamic range). Gas blending is performed using mass-flow controllers (MFC), which control four different gas streams. The blending process and the resulting composition are regulated by varying the gas flow through the MFC's. The system is able to generate gas mixtures containing up to four components, an inert carrier gas (synthetic air or nitrogen) and humidity. A personal computer controls all parts of the system via an IEEE-bus net.

Experiments – Equipment

Experiments	Assessment of hydrogen sensors performance with respect to:	
	- sensitivity to target gas	
	- influence of temperature, humidity and altitude	
	 cross sensitivity to other gases/vapours 	
	- aging and reproducibility	
Level of detail	-	
Instrumentation	Gas sensors are tested and calibrated using test gas mixtures of defined composition and humidity generated dynamically from appropriate parent gases or by permeation. The gas mixtures	

defined composition and humidity generated dynamically from appropriate parent gases or by permeation. The gas mixtures generated are analysed using a chilled mirror hygrometer, a gas chromatograph and a quadrupole mass-spectrometer to check the accuracy of the pre-determined mixture composition and its humidity.

Gas system	
Flow control	thermic mass flow controller
Number of gas components	maximum 4
Gas dilution	1:1 to 1:1000
Total gas flow	maximum 1I/min
Humidity	-80 to +80°C (<i>t_d</i>) 0,1 to 100% r.h.
Data acquisition	
Measurand	Impedance, capacity, resistance, phase angle, dielectric loss
Frequency range	100 Hz to 40 MHz
Number of sensors	5 internal, 5 external
Sensor chamber thermostat to:	-40 to +180°C, ±0,3 K

Schedule The facility is in operation, the time needed for preparation of experiments will be about 1 to 3 day, the time needed for conduction of experiments will depend on the test. The sensors output data will be collected and visualised in real time and recorded on general laboratory software platforms (LabView, Excel)

Tools general laboratory software, LabView, Excel

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments 2 persons are needed

What kind of movable equipment is available and could be shared?

-

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The system has been designed in view of the follow major upgrades:

- sensor response time
- sensitivity, aging, reproducibility
- reaction to sudden changes of environment (temperature, humidity, gases)
- calibration of gas sensors

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

BAM is highly interested in co-operating with both manufacturers and users, to help developing a unified procedure for testing the hydrogen sensors performance in a controlled environment. BAM can provide assistance to companies developing safety sensors in meeting the performance requirements demanded by users.

Which additional equipment could enhance your results?

The equipment is integrated in multipurpose laboratory of BAM.

Name	Tribometers for oscillating (PT1) or sliding friction (CT2, CT3)
Туре	PT1, CT2, CT3
Scale	lab scale
Experiments	friction and wear at elevated pressures or at cryogenic temperatures and in cryogenic liquids, including hydrogen
Application field	H4, V3-V4

Technical details

Dimensions	samples up to ca. 10 cm diameter
Temperatures	ambient (PT1); between ambient and 4 K (CT2, CT3)
Pressure	10 ⁻⁶ ambient (CT2, CT3), 20 bar (PT1)
Media	liquid or gaseous helium, hydrogen, or nitrogen; gaseous methane (PT1)
Special features	frequency: 0,1 to 20 Hz, stroke : 0,1 500 mic; normal forces between 1 and 20 N (PT1)
	up to 3000 rotations per minute with a relative velocity of up to 6 m/s; normal forces between 5 N and 500 kN (CT2, 3)

Experiments – Equipment

Experiments	Selected pairs of material are investigated for their behaviour under oscillating (PT1) or sliding (CT2, CT3) friction by moving one partner against the other (pin on disk). Tests of the performance and lifetime of axial bearings
Instrumentation	force, displacement, pressure, temperature, sample investigation after test
Schedule	by agreement

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? Depends on the experiment, normally 1 (PT1) or 2 (CT2, CT3) What kind of movable equipment is available and could be shared? none

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

PT1: pressures up to 100 bar CT2, CT3: The cryostat can be used for any experiment which fits in

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Partner: CEA

Facilities: - MISTRA - GAMEL

Name	MISTRA
Туре	cylindrical steel vessel
Scale	originally designed as 1/10 th in linear scale of Pressurized Water Reactor containment
Experiments	studies of H2 (simulated by He) release and distribution in a confined geometry
Application field	H5 (tunnels, parking, garage) V1 (hydrogen release, mixing and distribution)

Technical details

Dimensions	7m high, 4m diameter,	100m³
	• · · · ·	

- Temperatures Inner walls (water circuit) may be set at temperatures up to 140°C (controlled within 1°C). The injected helium gas (to represent hydrogen) may be heated (up to 200°C) to increase buoyancy effects.
- Pressure Design pressure = 6 bars
- Media Air and helium.
- Special features Large scale, with 3D spatial instrumentation (thermocouples, gas sampling points, LDV at several locations) to study helium release in jet or plume regimes in confined or semi-confined (with opening of the facility) geometry. Data suitable for CFD code validation. As of end of 2004, compartments will be installed inside the facility to study H2 distribution in a complex geometry.

Further particulars The facility is mainly used in the framework of containment thermalhydraulics and hydrogen risk for Pressurized Water Reactors. As such, it also contains a steam injection line, condensate collectors and a spray system.

Experiments - Equipment

Experiments	Helium distribution tests (axisymmetric configuration, performed in 1999-2000). New tests (3D configuration) scheduled in 2004.		
Level of detail	Gas concentration measurements, velocity measurements using LDV, vane wheels or hot wire anemometry. Spatial resolution about 0.5m in horizontal and vertical directions.		
Instrumentation	Gas temperature Pressure	Thermocouples	
	Gas composition	Simultaneous sampling and analysis by mass spectrometry	

Velocity LDV (on different radii), PIV, hot wire anemometry, vane wheels

ScheduleTests are generally conducted within one day. Post-processing of
results within one week.ToolsPost-processing of results using MATLAB
CFD analyses have been performed using the CAST3M code of CEA
(Boussinesq model, Low Mach number model, k-ε model or mixing
length)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3

What kind of movable equipment is available and could be shared?

LDV bench, mass spectrometry. Sharing of equipment is possible but needs to be approved internally by CEA.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

A more powerful PIV system with a larger frame would allow to have a more complete picture of the velocity field in the containment. (the current PIV system is limited to a small frame of about 20cm length).

Non-intrusive optical techniques to measure concentrations could be investigated and compared to measurements using sampling and mass spectrography.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Good control of initial and boundary conditions for study of H2 release and distribution in confined geometry. Compartments will add geometric complexity. The instrumentation yields data suitable for CFD code validation.

Which additional equipment could enhance the results of your experiments?

Better velocity measurements using a more powerful PIV system. Alternative measurement systems for concentration measurements to improve transient analysis (faster sampling and analysis).

GAMEL (under construction, available in 2005)

Overview

Name

Type cubic polycarbonate vessel

Scale small scale

Experiments detailed studies of H2 (simulated by He) release and distribution in a 3D confined geometry

Application field H2-H5, V1

Technical detailsDimensions1 m³ vessel (0.91x0.91x1.22)Temperaturestest at normal temperaturePressuretest at normal pressureMediaair, helium, nitrogen, and others gasSpecial featuresidealised geometry and transparent for optical diagnosticsFurther particulars-

Experiments - Equipment

Experiments	This small vessel is de distribution and variou the first semester of 2	esigned for detailed analytical stu s gas mixtures. This facility will b 005.	idies of flow be available in	
Level of detail	Gas concentration measurements (mass spectrometry or gas chromatography)			
	Velocity, turbulence characterisation by LDA (Laser Doppler Anemometry), PIV (Particle Image Velocimetry) and hot wire anemometry. We want to use PLIF (Planar Laser-Induced Fluorescence) simultaneously to PIV diagnostic for concentration field and develop some new non-intrusive optical techniques like UV absorption spectrometry.			
Instrumentation	gas temperature pressure gas composition velocity	thermocouples piezoelectric mass spectrometer (and PLIF spectroscopy) LDV, PIV, hot wire anemomet	;, UV try	
Descriptions of expe	erimental facilities 3	4 / 211	D09JRC - CEA	

Scheduletests are generally conducted within one day and post-processing of
result within one weekToolsPost-processing of results using MATLABCFD analysis have been performed with using the CAST3M code of
the CEA (Boussinesq model, Low Mach number model, k-ε model or
mixing length)

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

LDV bench, mass spectrometry. Sharing of equipment is possible but needs to be approved internally by CEA.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

A more powerful PIV system with a larger frame would allow to have a more complete picture of the velocity field in the containment. (the current PIV system is limited to a small frame of about 20cm length).

Non-intrusive optical techniques to measure concentrations could be investigated and compared to measurements using sampling and mass spectrography.

• To prepare promotion and specialisation

Which features/possibilities would you like to promote?

Non-intrusive optical diagnostic

Which additional equipment could enhance the results of your experiments?
Partner: Fh-ICT

Fraunhofer Institut Chemische Technologie

- Heatable high pressure vessel Facilities:
 - Device for flame jet ignition
 - High pressure vessel with windows
 - Test stand
 - Testing area
 - Fast Online Spectroscopy
 - Hydrogen Measurement System
 - 3-axis Positioning System
 - Gas Mixing Unit

Name	Heatable high pressure vessel
Туре	vessel
Scale	small scale
Experiments	studies on decomposition and ignition induced by temperature increase and external ignition
Application field	V2

Technical details

Dimensions	20.6 cm³ vessel, spherical volume
	38.6 cm ³ vessel in a tube like modification
Temperatures	heatable from 20 °C up to 500 °C
Pressure	static pressures up to 100 MPa, short pressure peaks up to 600 MPa
Media	hydrogen, air, nitrogen, non corrosive gases, solids
Special features	isothermal and non-isothermal experiments are enabled in a wide pressure and temperature range (up to 100 MPa and 500 °C)
	the system is able to withstand pressure peaks and therefore even explosion like reactions
Description	The system consists of 2 stainless steel chamber parts which are closed by an hydraulic system. The system is therefore statically leak tight up to 100 MPa and withstands short pressure peaks up to 600 MPa. It is heated by heating coils. Operation temperature range is from 20 °C up to 500 °C. Data acquisition and appropriate sensors enable measurements of long time duration (hours) and simultaneously deliver information of short time pressure changes (up to 40 MHz acquisition rate) caused e.g. by self-ignition.

Experiments - Equipment

Experiments The test system enables measurements of the profiles and absolute values of pressure increase depending on temperature (isothermal and non-isothermal) in a wide pressure and temperature range (up to 100 MPa and 500 °C !). The system withstands pressure peaks and therefore even explosion like reactions. Ignition of pressurized gas mixtures in the high pressure and temperature regime have been investigated. Decomposition studies have been conducted.

Level of detail

Instrumentation	thermocouples pressure sensors
Schedule	heating experiments with different heating rates are possible, these experiments have a duration (depending on the heating rate) of 1 day
	the number of ignition experiments in the high pressure regime during one day depend on the selected temperature profile
Tools	high speed data acquisition

Information for the preparation of integration

 To prepare exchange of instruments and personnel How many persons are needed to prepare/conduct experiments?
 2 What kind of movable equipment is available and could be shared?

none

Name	Device for flame jet ignition
Туре	cylindrical vessel with vent opening
Scale	large scale
Experiments	studies on flame jet ignition
Application field V2	

Technical details	
Dimensions	 9.35m³ vessel; total length 4.8m; outer dia: 1.6m; length of cylindrical part: 4.35m; wall thickness: 5mm; max static overpressure: 2bars; front side openings: ½, ¼, 1/8 of total front area
Temperatures	-
Pressure	static overpressure max. 2 bars
Media	-
Special features	-

Experiments - Equipment

Experiments	Vessel could be used for flame jet ignition of hydrogen-air mixtures located adjacent to the vessel opening; flame jet is generated by ignition of a hydrogen-air-mixture within the vessel at its rear side and then emerging from the vessel opening.
Level of detail	-
Instrumentation	pressure; gas composition; flame speed
Schedule	-
Tools	-

Information for the preparation of integration

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

See above; additionally, the interaction of the flame jet with an obstacle located within the cloud outside of the vessel is possible: the obstacle is a 3 dimensional array of pipework, consisting of single cruciform plastic parts: Outer dim. of obstacle: $4x4x2 m^3$; volume blockage: 10%.

Name

me High pressure vessel with windows

Type 1 litre high pressure vessel with windows

Scale small scale

Experiments Hydrogen-Air-explosions with initial pressures up to 3 MPa and time resolved spectroscopic measurements in the UV (OH-bands) and the NIR (water bands) and pressure measurement

Application field V2

Technical details	
Dimensions	1 litre
Temperatures	-
Pressure	up to 3 MPa
Media	e.g. Hydrogen-Air (others possible)
Description	 piezoelectric pressure transducer high-speed-camera up to 40.000 frames/s Spectroscopy: - UV: Diode-Array, 300-330nm, 0.1nm, scan 10ms - NIR: AOTF-spectrometer 1-2.6ym, scan 1ms

Experiments

Experiments	Quantitative measurement of molecular band radiation in correlation to
	pressure and time, pressures, flame front velocities, laminar burning
	velocities depending on pressure

Name	Test stand
Туре	closed test stand with blow-out option
Scale	full scale
Experiments	multipurpose tests with energetic materials
Application field	V2

Technical details		
Dimensions	4 separated test stands (3x4m)	
Temperatures	-	
Pressure	-	
Media	-	
Description	test stands for energetic materials protected control-room nearby universal testing-equipment setup possibilities	

Name	Testing area
Туре	open-air
Scale	full scale
Experiments	studies on explosions, tank testing, hydrogen-release
Application field	V1, V2, H3, H4, H5

Technical details	
Dimensions	18 m diameter
Temperatures	-
Pressure	-
Media	-
Description	protected testing-area protected control-room nearby universal testing-equipment setup possibilities

Name	Fast Online Spectroscopy
Туре	NIR to UV-VIS spectrometers
Scale	all scales
Experiments	all kind of experiments where spectral radiation and temperatures must be acquired
Application field	-

Technical details

Description several types of spectrometers are available: Filter wheel spectrometer spectral range: 1.6...14µm

resolution ~1% FS speed 50, max 100 spectra per second

Lattice spectrometer (OMA) spectral range UV-VIS lattices 30/150/300nm speed up to 1000 spectra per second

Lattice Spectrometer (Zeiss diode array) spectral range 0.95...1,7µm resolution 18nm speed up to 100 spectra per second

Fourier spectrometer spectral range 2.5...16µm resolution 0.5cm^{-1'} speed up to 1 spectrum per second

AOTF spectrometer spectral range 1.25...2.6µm without restrictions flexible selectable resolution flexible selectable speed 1000 spectra per second @ 200 points resolution

2-colour sandwich pyrometer spectral range NIR speed 100000 temperature measurements per second

Hot gas sensor spectral range NIR speed 500 measurements per second data emission temperature, water- and soot density

Multi colour spectrometer spectral range visible light speed 200 spectra per second

Name	Hydrogen Measurement System	
Туре	fast 12-channel H2 concentration measurement system	
Scale	all scales	
Experiments	all kind of experiments where hydrogen concentrations must be observed with high time res	solution
Application field	-	

Technical details

Dimensions

Temperatures ambient temperature range

Pressure

Media hydrogen in air

-

_

Description continuous gas probe sampling system with 12 heat conducting sensors time resolution < 2s 0,1-0,5 l/min gas sampling flow 0-10 Vol.-% (+/-0.05 Vol.-%) hydrogen in air measurement range

0

Name	3-axis Positioning System
Туре	programmable positioning system
Scale	all scales
Experiments	all kind of experiments where position dependent data must be acquired
Application field	-

Technical details	8
Dimensions	2m x 2m x 2m working range
Temperatures	ambient temperature range
Pressure	-
Media	-
Description	programmable 3-axis positioning system based on tooth strap stepping motor axes with control unit 5 kg moved mass (max.) 0.1 mm positioning precision remote control possible

Name	Gas Mixing Unit
Туре	remote controlled 4 gas mixing unit
Scale	all scales
Experiments	all kind of experiments where well defined (hydrogen-) concentrations or mass flows are needed
Application field	-

Technical details

Dimensions	-
Temperatures	-
Pressure	0 – 44 bar output
Media	hydrogen, nitrogen, air, oxygen (others possible)
Description	5 mass flow controllers 0.05 - 1250 In/min flow range 4 mixing stages remote controlled programmable

Partner: FZJ

Facilities: – REKO-1 – REKO-2 – REKO-3 – REKO-4

Name	REKO-1
Туре	flow reactor
Scale	small scale
Experiments	studies on catalyst elements for H2 recombination under forced flow conditions
Application field	H5, V3

Technical details

- Dimensions 2.5 cm pipe diameter
- Temperatures up to 150 °C inlet gas temperature
- Pressure ambient pressure
- Media *hydrogen, air, nitrogen, water steam*
- Special features glass section enabling optical measurement of substrate temperatures

Experiments – Equipment

Experiments	Catalyst elements to be used for hydrogen recombination are tested under steady-state conditions. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature, flow conditions.	
Level of detail	-	
Instrumentation	gas temperature catalyst temperature gas composition flow	thermocouples pyrometers hydrogen analyser oxygen analyser water steam analyser mass flow controllers
Schedule	one day needed for preparation, conduction, interpretation of experiments	
Tools	DeltaV Process Control, MS Excel	

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 person

What kind of movable equipment is available and could be shared?

pyrometers

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Sensors testing, influence of different gas components

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Name	REKO-2
Туре	pressure vessel
Scale	medium scale
Experiments	studies on catalyst elements for H2 recombination
Application field	H5, V3

Technical details	
Dimensions	1m height, 156 litres volume
Temperatures	up to 150 °C initial gas temperature
Pressure	10 bars
Media	hydrogen, air, nitrogen, water steam
Special features	vessel evacuation in order to create inert N2 atmosphere

Experiments – Equipment

Experiments	Startup behaviour and depletion efficiency of catalyst elements to be used for hydrogen recombination are tested. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature. The facility was especially designed for tests in inert N2 atmosphere.	
Level of detail	-	
Instrumentation	gas temperature catalyst temperature pressure gas composition injection flow	thermocouples thermocouples pressure transducer hydrogen analyser mass flow controllers
Schedule	one day needed for preparation one day needed for conduction and interpretation of experiments	
Tools	DeltaV Process Control, MS Excel	

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2 persons for preparation, 1 person for conduction

What kind of movable equipment is available and could be shared? *none*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Sensors testing, influence of different gas components

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

-

Which additional equipment could enhance the results of your experiments?

Name	REKO-3
Туре	flow reactor
Scale	medium scale
Experiments	studies on catalyst elements for H2 recombination under forced flow conditions
Application field	H5, V3

Technical details

Dimensions	46 x 5 cm² flow channel

- Temperatures up to 150 °C inlet gas temperature
- Pressure ambient pressure

-

Media *hydrogen, air, nitrogen, water steam*

Special features

Experiments – Equipment

Experiments	Catalyst elements to be used for hydrogen recombination are tested under steady-state conditions. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature, flow conditions.	
Level of detail	-	
Instrumentation	gas temperature catalyst temperature gas composition flow	thermocouples thermocouples inserted inside the plates mass spectrometer mass flow controllers
Schedule	one day needed for preparation, one day needed for conduction and interpretation of experiments	
Tools	DeltaV Process Control, MS Excel	

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 person

What kind of movable equipment is available and could be shared? *none*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Sensors testing, influence of different gas components

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

-

Name	REKO-4 (under construction)
Туре	pressure vessel
Scale	medium/large scale
Experiments	studies on catalyst elements for H2 recombination under natural flow conditions
Application field	H5, V3

Technical details

Dimensions	3.5 m height, 2.0 m diameter
Temperatures	250 °C gas temperature
Pressure	70 bars
Media	hydrogen, air, nitrogen, water steam
Special features	-

Experiments – Equipment

Experiments	Startup behaviour and depletion efficiency of catalyst elements to be used for hydrogen recombination are tested under natural flow conditions. Testing parameters are gas composition (hydrogen, nitrogen, air, water steam), gas temperature.
Level of detail	-
Instrumentation	gas temperature catalyst temperature gas composition
Schedule	-
Tools	DeltaV Process Control, MS Excel

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

_

-

-

-

-

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Partner: FZK

Facilities: - A1 Vessel

- A3 Vessel
- A6 Vessel
- 12 m detonation tube (DT)
- Flow Test Chamber (TC)
 Partially Vented Explosion Tube (PET)

Descriptions of experimental facilities 67/211

D09JRC - FZK

Overview	
Name	A1 Vesset
Туре	cylindrical vessel
Scale	full or large scale
Experiments	studies on turbulent combustion and detonations, vented explosions, hydrogen distribution, integrity of mechanical structures under high pressure load
Application field	H2-H5, V1-V3

Technical details

Dimensions	98 m³ vessel, internal diameter 3.3 m, length 12 m
Temperatures	ambient
Pressure	up to 100 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen.
Special features	full or large scale; licensed high static pressure 100 bar; multiple entries possible
Further particulars	several vents up to 800 mm in diameter; several windows for visual observations; internal volume can be divided on several joined rooms with different volume; regular grid with obstacles can be used inside the volume; A1 vessel can be connected with other large vessel (e.g. A3 vessel)

Experiments – Equipment

Experiments - experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressure;

- effect of obstacles and multi-compartment (room connections with different volumes) on flame acceleration and DDT;
- effect of venting and pre-compression in connecting rooms on flame propagation regime;
- jet initiation of detonation;
- experiments on hydrogen distribution in closed volume

HySafe – Safety of Hydrogen as an Energy Carrier

Level of detail	integral	
Instrumentation	gas temperature pressure gas composition hydrogen distribution velocity deformations	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control sonic hydrogen sensors photodiodes, ion probes strain gauges
Schedule	 preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data 	
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)	
Further particulars	-	

Information for the preparation of integration

Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on integrity of mechanical structures under detonation pressure load could be done using A1 vessel as secure shell against missiles.

To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large and full scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, hydrogen distribution in closed volume.

Which additional equipment could enhance the results of your experiments?

Name	A3 Vessel
Туре	cylindrical vessel
Scale	full or large scale
Experiments	studies on turbulent combustion and detonations, vented explosions, hydrogen distribution
Application field	H2-H5, V1-V3

Technical details	
Dimensions	33 m³ vessel, internal diameter 2.5 m, height 8 m
Temperatures	ambient
Pressure	up to 60 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen
Special features	large scale; licensed high static pressure 60 bar, multiple entries possible
Further particulars	vessel has several vents of different sizes; internal volume can be divided on several joined rooms with different volume; regular grid with obstacles can be used inside the volume; A3 vessel can be connected with other large vessel (e.g. A1 vessel)

Experiments – Equipment

Experiments	 experiments on turbule mixtures at different in 	ent combustion in uniform and nonuniform gas itial pressure;	
	 effect of obstacles and multi-compartment (room connections with different volumes) on flame acceleration and DDT; 		
	 effect of venting and p propagation regime; 	re-compression in connecting rooms on flame	
	- experiments on hydrogen distribution in closed volume		
Level of detail	integral		
Instrumentation	gas temperature pressure gas composition	thermocouples piezoelectric, piezoresistive mass spectrometer, gas flow control	

Descriptions of experimental facilities 70 / 211

HySafe – Safety of Hydrogen as an Energy Carrier

	hydrogen distribution velocity	sonic hydrogen sensors photodiodes, ion probes
Schedule	preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data	
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)	

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on hydrogen distribution and hydrogen stratification effect on flame propagation.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large or full scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, hydrogen distribution in closed volume.

Which additional equipment could enhance the results of your experiments?

Dverview			
Name	A6 Vessel		
Туре	cylindrical vessel		
Scale	large scale		
Experiments	studies on turbulent combustion and detonations, vented explosions, hydrogen distribution, integrity of mecha	anical structures under high pressur	re load

Application field H2-H5, V1-V3

Technical details

Dimensions	21 .5 m³ vessel, internal diameter 3.3 m, height 3.1 m
Temperatures	ambient
Pressure	up to 40 bar of static pressure
Media	hydrogen, air, nitrogen, oxygen
Special features	large scale; licensed high static pressure 40 bar, multiple entries possible
Further particulars	vessel has two vents of 800 mm in diameter; gas filling system; data acquisition system; spark/glow plug for mixture ignition

Experiments – Equipment

Experiments	 experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressure; 		
	 effect of venting and pre-compression in connecting rooms on flame propagation regime; 		
	- experiments on hydrogen distribution in closed volume;		
	- integrity of mechanical structures under detonation pressure load		
Level of detail	integral		
Instrumentation	gas temperature pressure	thermocouples piezoelectric, piezoresistive gauges	
	gas composition velocity deformations	mass spectrometer, gas flow control photodiodes, ion probes strain gauges	
---------------------	---	---	--
Schedule	preparatory work of experimental set-up to specific test series requires one month; 1 day is needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data		
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)		
Further particulars	-		

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

_

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on integrity of mechanical structures under detonation pressure load could be done using A6 vessel as protection against missiles.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large scale experiments on turbulent combustion and detonation, experiments under elevated pressures and extremely high pressure load, hydrogen distribution in closed volume.

Which additional equipment could enhance the results of your experiments?

Name	12 m detonation tube (DT)	
Туре	cylindrical tube	
Scale	medium scale	19x
Experiments	studies on turbulent combustion, DDT and steady state detonations, heat transfer, ignition, flame pro	pagation
Application field	H2-H5, V1-V3	

regimes, chemical kinetic.

Technical details

Dimensions	internal diameter 350	mm, length 12 m
------------	-----------------------	-----------------

Temperatures ambient

Pressure up to 100 bar of static pressure

Media hydrogen, air, nitrogen, oxygen

Special features medium scale

Further particulars tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.45, 0.6, 0.75, 0.9; tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition

Experiments – Equipment

Experiments	 experiments on turbulent combustion in uniform and nonuniform gas mixtures at different initial pressure; experiments on flame acceleration, DDT and flammability limits; hydrogen distribution in closed volume 		
Level of detail	microscopic to integral		
Instrumentation	gas temperature pressure gas composition velocity	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control photodiodes, ion probes	

Schedule	preparatory work of experimental set-up to specific test series requires one week; 3 – 4 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on chemical kinetic and heat transfer.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Medium scale experiments on turbulent combustion and detonation, experiments under elevated and reduced pressures, experiment on ignition and flame propagation limits.

Which additional equipment could enhance the results of your experiments?

Name

Type rectangular chamber

Scale full or large scale

Experiments studies on vented combustion and detonations (up to 16g of hydrogen); hydrogen distribution, testing of ventilation system; testing of automotive hydrogen engines

Flow Test Chamber (TC)

Application field H2-H5, V1-V3

Technical details

Dimensions	160 m³ chamber, dimensions 8.53x5.5x3.3 m
Temperatures	ambient
Pressure	ambient
Media	hydrogen, air
Special features	full/large scale
Further particulars	chamber is equipped with ventilation system with variable exchange rate; possibility of hydrogen inlet with controlled flow rate; hydrogen engines can be tested inside of test chamber

Experiments – Equipment

Experiments	 experiments on vented combustion and detonations; experiments on hydrogen distribution in closed volume experiments on shock wave load under combustion and detonation 		
Level of detail	integral (macroscopic)		
Instrumentation	gas temperature pressure gas composition hydrogen distribution velocity	thermocouples piezoelectric, piezoresistive gauges mass spectrometer, gas flow control sonic hydrogen sensors photodiodes, ion probes, visual observations	

with high speed CCD camera

	HySafe – Safety of Hydr	rogen as an Energy Carrier
	deformations	strain gauges, displacement sensors (laser, mechanical and visual)
Schedule	preparatory work of experimental set-up to specific test series requires one month; 1 – 2 days are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data	
Tools	standard software required for data acquisition system to convert analogous signals to digital form (ASCII or binary format)	

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3-4 persons are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Data acquisition system processed by accompanying service team (1-2 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on vented combustion and detonation could be done using test chamber as protection against shock wave and thermal load.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Large and full scale experiments on hydrogen distribution in big closed volume, vented combustion and detonation (up to 16 g of hydrogen)

Which additional equipment could enhance the results of your experiments?

-

Overview		
Name	Partially Vented Explosion Tube PET	
Туре	cylindrical tube with variable opening	
Scale	medium scale	
Experiments	studies on vented explosi acceleration and DDT; jet	ons, turbulent flame propagation, flame initiation of detonation
Application field	H2-H5, V1-V3	

Dimensions	55 dm ³ vessel, internal diameter 0.1 m, length 7 m		
Temperatures	ambient		
Pressure	ambient		
Media	hydrogen, air, nitrogen, oxygen		
Special features	medium scale; controlled venting degree		
Further particulars	tube could be filled with regular ring shape obstacles grid spaced by tube diameter, blockage ratio BR = 0.3, 0.6; variable transverse venting ratio (opening rate) from 0 to 40% tube is equipped with gas filling system and data acquisition system, spark/glow plug for ignition; PEV has possibility to make combustible surrounding atmosphere with thin polyethylene film around of the tube.		

Experiments – Equipment

Experiments	 experiments on vented combustion in uniform and nonuniform gas mixtures; experiments on flame acceleration and DDT under transverse venting conditions. 		
Level of detail	integral		
Instrumentation	gas temperature pressure gas composition	thermocouples piezoelectric, piezor mass spectrometer,	resistive gauges gas flow control
Descriptions of exp	erimental facilities	78/211	D09JRC - FZK

HySafe -	Safety of	^r Hydrogen	as an Energy	Carrier
----------	-----------	-----------------------	--------------	---------

	velocity	photodiodes, ion probes, visual observation with high speed CCD camera.
Schedule	preparatory work of experimental set-up to specific test series requires one week; 3 – 4 hours are needed for preparation and conduction of one experiment in the series; 1 day is needed for processing of raw experimental data	
Tools	standard software requi analogous signals to dig	red for data acquisition system to convert ital form (ASCII or binary format)
Evently any search and any		

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2-3 persons are needed to prepare/conduct experiments.

What kind of movable equipment is available and could be shared?

Experimental facility and data acquisition system processed by accompanying service team (2-3 persons)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Experiments on transient regimes of DDT at various degree of venting: from fully confined to unconfined gas mixture.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Small scale experiments on turbulent combustion and DDT under transverse venting conditions.

Which additional equipment could enhance the results of your experiments?

Partner: GexCon

- Facilities: 168 m³ open geometry with internal obstructions
 - 1:3.2 scale offshore module
 - Connected vessels
 - 6m channel
 - 50m³ tube
 - 1.2 m³ closed vessel
 - 216 litre dispersion vessel
 - 20 litre spray vessel
 - 1.4 m channel
 - 3D corner

Name	GexCon 168 m ³ open geometry with internal obstructions
Туре	explosion vessel
Scale	large scale (168 m³)
Experiments	studies on explosions in open, congested geometries
Application field	V2, V3

Technical details

Dimensions	168 <i>m</i> ³ vessel, 12 <i>m</i> long, 4 <i>m</i> wide and 3.5 <i>m</i> high
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure.
Media	gas explosions hydrogen/air
Special	variable geometry congestion. Obstructed volume 9x3x3 m (81 m ³). Will be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non-homogeneous (leak- generated) gas mixtures. Potential for detonations but ability to handle them is somewhat uncertain. Explosion mitigation experiments and simulation validation for complex, congested but open geometries
Description	A simple frame system is covered with light plastic sheeting prior to gas filling. This sheet is clamped in place and is released just prior to ignition.

Experiments - Equipment

Experiments Test configuration is set up in terms of internal geometry and congestion. The vessel is equipped with measuring devices and instrumentation for explosion pressure and flame speed measurement etc. After covering the frame with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.

Level of detail

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation	Gas concentration (O ₂)	
	Explosion pressure (piezoelectric/piezoresistive)	
	Dynamic pressure component	
	External blast pressures	
	Flame velocity	
	Video (normal and high speed)	
Schedule	Preparation:1-3 weeks depending on experimental content	
	Conduction: depending on experimental content, (typical 2-3 tests/day)	
	Interpretation of experiments/reporting: 2-3 weeks depending on content	
Tools	NI-LabView, MS-Excel, MS-Word	

Information for the preparation of integration

• To prepare exchange of instruments and personnel

3-4 persons are needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 1:3.2 scale offshore module	- F. W. W. Mar	
Туре	explosion vessel		
Scale	large scale (50 m³)		
Experiments	studies on vented explo	osions in realistic geometries	
Application field	V1, V2, V3		

Technical details	
Dimensions	50 <i>m</i> ³ vessel, 8 <i>m</i> long, 2.5x2.5 <i>m</i> cross section
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure. Explosion pressures up to 3 barg
Media	gas explosions hydrogen/air, hybrid gas/oil mist explosions
Special	realistic and variable geometry. Vented explosions, variable vent area. Transparent front wall to allow optical access.
Description:	Will be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non-homogeneous (leak- generated) gas mixtures due to maximum pressure limitations. Explosion mitigation experiments and simulation validation for realistic geometries

Experiments - Equipment

ExperimentsTest configuration is set up in terms of internal geometry and vent
openings. The module is equipped with measuring devices and
instrumentation for explosion pressure measurement etc. After
covering the vent openings with plastic foil, gas is introduced into the
vessel either by a high-pressure release or by mixing using a
recirculation system (to obtain homogenous mixtures). The gas cloud
is then ignited and the ensuing explosion monitored.Level of detail-InstrumentationGas concentration (O2)
Explosion pressure (piezoelectric/piezoresistive)
Dynamic pressure component

HySafe – Safety of Hydrogen as an Energy Carrier

	External blast pressures
	Flame velocity
	Video (normal and high speed)
Schedule	Preparation:1-3 weeks depending on experimental content
	Conduction: depending on experimental content, (typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

2-3 persons are needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

Hydrogen dispersion experiments could be performed in this facility by applying additional instrumentation for hydrogen concentration measurements in real time

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Turbulence measurements

Structural response

• Website presentation

Additional material to be presented on the HySafe Website

Videos of release of hydrogen and transformer oil (used in a safety study for transformers) can be provided to web-site.

Name	GexCon connected vessels
Туре	explosion vessel
Scale	small scale (100 litre)
Experiments	studies on explosions in vented vessel
Application field	V2, V3

Technical details	
Dimensions	100 litre vessel, 2 m long, ~0.3 m in diameter
Temperatures	normal temperatures
Pressure	tests at normal pressure.
Media	gas explosions hydrogen/air
Special	variable internal configurations used to test explosion propagation ability through small orifices and pressure piling effects. Will be suitable for explosion tests using homogeneous hydrogen gas clouds.
Description:	Internal orifice plate is inserted between flanges to investigate pressure piling effects and flame travel through small openings.

Experiments - Equipment

Experiments	Test configuration is set up in terms of orifice configuration. The vessel is equipped with measuring devices and instrumentation for explosion pressure etc. After covering the vent with plastic foil, gas is introduced into the vessel by mixing using a flushing/recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Level of detail	-
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
Schedule	Preparation: 1 week depending on experimental content
	Conduction: depending on experimental content,(typical 5-6 tests/day)

HySafe – Safety of Hydrogen as an Energy Carrier

Interpretation of experiments/reporting: 2-3 weeks depending on content

Tools NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

- To prepare exchange of instruments and personnel 1 person is needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment
- To prepare filling possible gaps

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 6m channel
Туре	explosion vessel
Scale	large scale (9 m³)
Experiments	studies on vented explosions in idealised geometries
Application field	V1, V2, V3

Technical details	
Dimensions	9 m³ vessel, 6 m long,1.25x1.25 m cross section
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure. Explosion pressures up to 5 barg (>5 if steel roof)
Media	gas explosions hydrogen/air, hybrid gas/oil mist explosions
Special	idealised and variable geometry. Vented explosions, variable vent area. Transparent roof to allow optical access.
Description:	Will be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non-homogeneous (leak- generated) gas mixtures due to maximum pressure limitations. Explosion mitigation experiments and simulation validation for idealised geometries. Obstruction baffles of various heights can be inserted at 1m intervals on both sides of the vessel. 3 baffle sizes are available.

Experiments - Equipment

Experiments Test configuration is set up in terms of internal geometry and vent opening. The vessel is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the vent opening with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.

Level of detail

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures
	Flame velocity
	Video (normal and high speed)
Schedule	Preparation: 1-3 weeks depending on experimental content
	Conduction: depending on experimental content,(typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

2-3 persons are needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

Hydrogen dispersion experiments could be performed in this facility by applying additional instrumentation for hydrogen concentration measurements in real time

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Turbulence measurements

Structural response and explosion loading

Name	GexCon 50 m ³ tube	
Туре	explosion vessel	HIRSH
Scale	large scale (50 m³)	
Experiments	studies on dispersion/	explosions in closed/vented vessel (tunnels)

Application field V1, V2, V3, H5, H2

Technical details

Dimensions	50 m³ vessel, 10 m long, 2.5 m in diameter
Temperatures	normal outdoor temperatures
Pressure	tests at normal pressure. High pressures/detonations possible
Media	gas explosions hydrogen/air
Special	variable internal congestion. Will be suitable for explosion tests using homogeneous hydrogen gas clouds. Potential for detonations. Explosion mitigation experiments and simulation validation for idealised geometry.
Description:	Internal circumferential rings are inserted to investigate turbulence- generation. Vented explosion normally performed.

Experiments - Equipment

Experiments	Test configuration is set up in terms of internal geometry. The vessel is equipped with measuring devices and instrumentation for explosion pressure and flame speed measurement etc. After covering the vent with plastic foil, gas is introduced into the vessel by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Level of detail	-
Instrumentation	Gas concentration (O ₂) Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures

HySafe –	Safety of Hydrogen	as an Energy Carrier

	· · · · · · · · · · · · · · · · · · ·
	Video (normal and high speed)
Schedule	Preparation:4-5 weeks depending on experimental content
	Conduction: depending on experimental content, (typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

Flame velocity

3-4 persons are needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

-

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 1.2 m ³ closed vessel
Туре	explosion vessel
Scale	small scale (1.2 m³)
Experiments	studies on explosions in closed vessel
Application field	V1, V2, V3

Technical details	
Dimensions	1.2 m ³ cylindrical vessel
Temperatures	normal temperatures
Pressure	tests at normal pressure.
Media	gas explosions hydrogen/air
Special	Will be suitable for explosion tests using homogeneous hydrogen gas clouds to test combustion characteristics and mitigation techniques.
Description:	A closed cylindrical vessel with L/D ~2. Several inlets allow for variable ignition location and instrumentation layouts.

Experiments - Equipment

Experiments	The vessel is equipped with measuring devices and instrumentation for explosion pressure etc. Gas is introduced into the vessel by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored. Effect of sprays and/or other mitigation materials can be investigated.
Level of detail	-
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
Schedule	Preparation:1 week depending on experimental content
	Conduction: depending on experimental content,(typical 2-3 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

1 person is needed to prepare/conduct experiments

equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

-

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 216 litre dispersion vessel
Туре	gas dispersion/explosion vessel
Scale	small scale (216 litre)
Experiments	studies on gas dispersion/homogeneity
Application field	V1

Technical details

Dimensions	216 litre rectangular vessel, 1.2x0.9x0.2 m, possibility to mount partition walls
Temperatures	normal temperatures
Pressure	tests at normal pressure.
Media	gas dispersion of hydrogen
Special	Will be suitable for gas release & dispersion tests using hydrogen gas. Explosions for non-ideal (poorly mixed) clouds may be possible despite pressure tolerance limitations of vessel.
Description:	A semi-closed rectangular vessel designed for gas release and dispersion tests within idealised geometries. Internal layout can be varied by use of movable baffle plates. Real-time gas concentration measurements are performed to monitor gas dispersion processes for hydrogen. Gas mixtures are also allowed.

Experiments - Equipment

Experiments	The vessel is equipped with measuring devices and instrumentation for gas release monitoring and gas concentration measurements etc. Gas is introduced into the vessel via a high-pressure release. The effect of release type and characteristics and vessel geometry can be investigated.
Level of detail	-
Instrumentation	Gas release pressure / flowrate Gas concentration (H₂/O₂)
Schedule	Preparation:1 week depending on experimental content

HySafe – Safety of Hydrogen as an Energy Carrier

Conduction: depending on experimental content,(typical 8-10 tests/day) Interpretation of experiments/reporting: 2-3 weeks depending on content NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

Tools

- To prepare exchange of instruments and personnel 1 person is needed to prepare/conduct experiments equipment that is available and could be shared is limited
- To prepare filling possible gaps
- To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

A greater number of more accurate gas composition/concentration sensors for H_2 would improve the results obtainable.

Name	GexCon 20-litre spray vessel
Туре	explosion vessel
Scale	small scale (20 litre)
Experiments	studies on explosions in closed vessel
Application field	V2, V3

Technical details

Dimensions	20 litre vessel, ~ semi-spherical
Temperatures	normal temperatures
Pressure	tests at normal pressure
Media	gas explosions hydrogen/air
Special	Will be suitable for explosion tests using homogeneous hydrogen gas clouds to test combustion characteristics and mitigation techniques using sprays.
Description	approximately spherical vessel with 8-10 spray inlets for water and/or other liquids. Central ignition and pressure measurement allows determination of burning velocity characteristics etc.

Experiments - EquipmentExperimentsThe vessel is equipped with measuring devices and instrumentation for
explosion pressure etc. Gas is introduced into the vessel by mixing
using a flushing system (to obtain homogenous mixtures). The gas
cloud is then ignited and the ensuing explosion monitored. Effect of
sprays and mitigation liquids can be investigated.Level of detail-InstrumentationGas concentration (O2)
Explosion pressure (piezoelectric/piezoresistive)SchedulePreparation:1 week depending on experimental content
Conduction: depending on experimental content, (typical 5-6 tests/day)

HySafe – Safety of Hydrogen as an Energy Carrier

Interpretation of experiments/reporting: 2-3 weeks depending on content

Tools NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

- To prepare exchange of instruments and personnel 1 person is needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment
- To prepare filling possible gaps

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? Gas composition/concentration (H_2)

Name	GexCon 1.4m channel
Туре	explosion vessel
Scale	small scale (130 litre)
Experiments	studies on vented explosions in idealised geometries
Application field	V2, V3

Technical details

Dimensions	130 litre vessel, 1.44 m long,0.3x0.3 m cross section
Temperatures	normal temperatures
Pressure	tests at normal pressure. Explosion pressures up to ~3 barg
Media	gas explosions hydrogen/air or gas mixtures
Special	idealised and variable geometry. Vented explosions, variable vent area. Transparent front wall to allow optical access.
Description:	Obstruction baffles of various heights can be inserted at 0.24m intervals of the vessel. 3 baffle sizes are available (5, 10 & 15 cm). Vessel will only be suitable for explosion tests using homogeneous hydrogen gas clouds with limited gas concentration or for non- homogeneous (leak-generated) gas mixtures for the more complex obstacle configurations due to maximum pressure limitations. Ideal mixtures will be possible for the simpler geometries. Explosion mitigation experiments and simulation validation tests for idealised geometries are among the possibilities for this test vessel.

Experiments - Equipment

Experiments Test configuration is set up in terms of internal geometry and vent opening. The vessel is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the vent opening with plastic foil, gas is introduced into the vessel either by a high-pressure release or by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.

Level of detail	-
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	Dynamic pressure component
	External blast pressures
	Flame velocity
	Video (normal and high speed)
Schedule	Preparation: 2-3 days depending on experimental content
	Conduction: depending on experimental content, (typical 5-6 tests/day)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

1 person is needed to prepare/conduct experiments equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

Hydrogen dispersion experiments could be performed in this facility by applying additional instrumentation for hydrogen concentration measurements in real time

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Turbulence measurements

Structural response and explosion loading

Website presentation

Additional material to be presented on the HySafe Website We can make available a couple of photos from tests

Ove	rview
010	

Name	GexCon 3D corner
Туре	explosion vessel
Scale	small/ <i>large scale (50</i> <i>litre / 27 m³)</i>
Experiments	studies on vented explosions in complex idealised geometries
Application field	V2,V3

Technical details

Dimensions	50 litre vessel (0.37x0.37x0.37 m) or 27 <i>m</i> ³ vessel, 3x3x3 <i>m</i> Pipe arrays of different diameter and pitch giving volume blockage from 0.1 to 0.5
Temperatures	normal temperatures
Pressure	tests at normal pressure
Media	gas explosions hydrogen/air
Special	idealised and variable geometry. Vented explosions in idealised geometry
Description:	Will be suitable for explosion tests using homogeneous hydrogen gas clouds. Obstruction "pipe sets" of various types (number and size) can be inserted. Area and volume blockage ratio can thus be varied.

Experiments - Equipment

Experiments	Test configuration is set up in terms of internal geometry. The vessel is equipped with measuring devices and instrumentation for explosion pressure measurement etc. After covering the rig with plastic foil, gas is introduced into the vessel by mixing using a recirculation system (to obtain homogenous mixtures). The gas cloud is then ignited and the ensuing explosion monitored.
Level of detail	-
Instrumentation	Gas concentration (O ₂)
	Explosion pressure (piezoelectric/piezoresistive)
	External blast pressures

	HySafe – Safety of Hydrogen as an Energy Carrier
	Video (normal and high speed)
Schedule	Preparation: 1-3 weeks depending on scale and experimental content
	Conduction: depending on scale (typical 5-6 tests/day small scale, 2-3 tests/day large scale)
	Interpretation of experiments/reporting: 2-3 weeks depending on content
Tools	NI-LabView, MS-Excel, MS-Word

Information for the preparation of integration

• To prepare exchange of instruments and personnel

1 person is needed to prepare/conduct small scale experiments. 2-3 persons are needed to prepare/conduct large scale experiments. equipment that is available and could be shared is primarily limited to instrumentation and data logging equipment

• To prepare filling possible gaps

• To prepare promotion and specialisation

Which additional equipment could enhance the results of your experiments?

Gas composition/concentration (H₂)

Partner: HSE/HSL

Health & Safety Laboratory

An Agency of the Health & Safety Executive

- Facilities: - Ventilated dispersion and explosion facility
 - Gas dispersion facility
 - Jet fire facility
 - Hydrogen jet release facility

 - 366m gallery/tunnel Frictional ignition apparatus
 - Impact test track

Name	Ventilated dispersion and explosion facility
Туре	Modular Vented enclosure with integrated ventilation system
Scale	Full scale tests of gas releases into a controlled ventilation flow
Experiments	e.g. studies on vented explosions, tank testing,
Application field	H1-H6, V1-V2

Technical details

Dimensions	Enclosure with internal dimensions of 2.5m x 2.5m x15m. Modular construction to vary length up to 15 m.
Temperatures	Ambient temperature – outdoor facility
Pressure	Vented structure with up to 2 bar overpressure maximum operating pressure 150 bar
Media	Hydrogen or other gases
Special features	Ventilation system capable of 2500 m ³ s ⁻¹ Different ventilation configurations multiple entries possible

Experiments – Equipment

Experiments	Characterisation of hy controlled ventilation congestion, vent area	ydrogen release, ignited and un-ignited into a flow. Study effects of leak size, ventilation, a ect on dispersion and overpressure
Level of detail	High using large then	mocouple and transducer arrays.
Instrumentation	gas temperature pressure gas concentration flame size logging	thermocouples pressure transducers oxygen concentration cells thermal imaging camera up to 100 kHz
Schedule	time needed for: preparation (2 weeks, conduction (2 tests pe interpretation of expe), er day), riments(2 weeks)
Tools	Microlink, FAMOS so	ftware, Excel Software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

High pressure and liquid releases into ventilated flows.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Adaptation of apparatus for different types of release.

Which additional equipment could enhance the results of your experiments? *Effects of ventilation on different types of release.*

Name	Gas dispersion facility
Туре	Flat area suitable for characterising gas dispersion
Scale	Full scale tests, with flashing liquid releases up to 5 kgs ⁻¹ or gaseous releases
Experiments	Study of dispersion of flashing liquid or gas – mainly used with LPG, but could be used with H ₂
Application field	H1-H6, V1-V2

Technical details

Dimensions	> 100m wide x 200 m long
Temperatures	Ambient temperature
Pressure	Local storage pressure
Media	Hydrogen (LH2 and CGH2), LPG
Special features	Fully instrumented release and dispersion facility

Experiments – Equipment

Experiments	Characterisation of clouds of dispersing gas Characterisation of source terms Ignition of released gas	
Level of detail	-	
Instrumentation	gas temperature pressure gas concentration flame size weather conditions logging	thermocouples pressure transducers oxygen concentration cells thermal imaging camera 3 x weather stations up to 100 kHz
Schedule	time needed for: preparation (2-3 weeks), conduction (3-4 weeks),	

interpretation of experiments(2 weeks)

Tools Excel Software, data logging equipment

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

4

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Releases of cryogenically stored fluids

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Dispersion of releases of liquefied hydrogen and pressurised releases.

Which additional equipment could enhance the results of your experiments?

Direct hydrogen concentration measurements with H_2 analysers.

Name	Jet fire facility
Туре	LPG vapour jet fire facility
Scale	Full scale tests on samples and panels for up to 2 hour duration.
Experiments	<i>Commercial testing of PFP material and components. Testing to Jet-Fire Resistance Test (JFRT) standards</i>
Application field	H1-H6, V1-V2

Technical details

Dimensions	0.55 kg s ⁻¹ vapour, 10 kg s ⁻¹ liquid, LPG jet fire; 14 tonne LPG storage supply; 1000 l min ⁻¹ water deluge facility
Temperatures	Ambient temperature, Flame temperature ~1100 °C
Pressure	Local storage pressure , ~ 8 bar LPG
Media	LPG,
Special features	Commercial JFRT facility

Experiments – Equipment

Experiments	Characterisation of behaviour of PFP material and components Investigation of BLEVE behaviour of LPG storage cylinders (2 tonne)
Level of detail	-
Instrumentation	gas temperature thermocouples pressure pressure transducers fuel flow rate mass flow meters flame thermal imaging camera and video camera weather conditions weather stations
Schedule	time needed for: preparation (2 days), conduction (2 days per test), interpretation of experiments(1 day)
Tools	Excel Software, data logging equipment,
Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

3 - 4

What kind of movable equipment is available and could be shared?

None – fixed facility

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Investigation of behaviour of hydrogen storage tanks under jet-fire attack.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Standard jet-fire resistance testing of samples and components. Could be used for H2 equipment.

Which additional equipment could enhance the results of your experiments?

Longer duration tests with more LPG storage.

Name	Hydrogen jet release facility
Туре	Gas supply and pipe work to enable pressurised releases
Scale	Full scale tests, with releases up to 150 bar, 12mm release orifice ,
Experiments	Study of ignited and unignited jet releases of hydrogen
Application field	H1-H6, V1-V2

Technical details

Dimensions	Release orifice up to 12 mm diameter, pressure up to 150 bar
Temperatures	Ambient temperature
Pressure	150 bar
Media	Hydrogen
Special features	Large scale release of ignited or unignited hydrogen at medium pressure

Experiments	Characterisation of hydrogen jet releases – gas concentration. Characterisation of hydrogen jet flames – size, visibility, temperature etc.
Level of detail	-
Instrumentation	gas temperature thermocouples pressure pressure transducers gas concentration oxygen concentration cells flame size thermal imaging camera logging up to 100 kHz
Schedule	<i>time needed for: preparation (3 weeks), conduction (4 weeks), interpretation of experiments(2 weeks)</i>
Tools	Microlink, FAMOS software, Excel Software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

5

What kind of movable equipment is available and could be shared?

None

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Confined jet releases, releases with obstructions.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Dispersion tests, obstructed releases (ignited and unignited) and experience of measuring over-pressures of ignition.

Which additional equipment could enhance the results of your experiments?

Direct hydrogen concentration measurements with H_2 analysers.

Name	366m gallery/tunnel
Туре	Concrete test enclosure/tunnel
Scale	Full/large scale
Experiments	Combustion and ventilation controlled overpressures Fragmentation.
Application field	V1, V2 and H4, H5

Technical details

Dimensions	Cross section = 5.6 m^2 (2.55 m to crown, 2.75 m maximum width) Length: 366 m
Temperatures	Up to 750°C in limited (20 m long) area. Up to 90°C overall.
Pressure	Atmospheric
Media	Air
Special features	Ventilation flow up to 5 m.s ⁻¹ throughout. Access for instrumentation every 3 m (25 mm diameter). Larger access ports every 25 m (0.3 m x 0.2 m)

Experiments	Fire effects on components at full-scale / reduced scales (previously used to validate codes for Channel Tunnel using 1/3 scale models) Small explosion tests. Effect of ventilation/wind on combustion / consequences
Level of detail	-
Instrumentation	Thermocouples (>100 have been used in single experiments) Heat flux (Gardon Gauges) Mass change (load cells) Air flows (hot wire / rotary vane / vortex shedding anemometry) Smoke detection Video/still image cameras
Schedule	Typical work at this scale would involve: Preparation for test programme: 10 days Testing: 1 to 4 tests per day Preliminary analysis of results (e.g. elimination of broken

HySafe – Safety of Hydrogen as an Energy Carrier

instruments): up to 4 tests per day. Full Analysis of results: 1 to 2 days per test. As facility is adaptable to a range of work, exact schedule would vary depending on specific details.

Tools Microcal Origin, SPSS Sigmaplot, Microsoft Excel

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared? *Fixed facility available to other partners*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Hydrogen ventilation, fire and explosion in tunnels and mitigation

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments? *Full/large scale tunnel facility with extensive scope for instrumentation*

Name	Frictional ignition apparatus	2			
Туре	Ignition test facility with vented explosion vessel enclosure			0	
Scale	Full scale test apparatus operating at up to 20m/s, 5kN loads in a 0.3m ³ vented explosion vessel		0	0	
Experiments	Studies into frictional rubbing events in flammable atmospheres. Research into spark and hot	surface ignitior	n events		

Application field H1-H6, V1-V2

Technical details

Dimensions	Apparatus laboratory based on 4m long lathe bed. Explosion vessel is 0.3m ³ volume. Driven disc 30 cm diameter maximum and 25mm cross section sacrificial slider.
Temperatures	Test carried out at ambient but scope for heating or cooling. Temperature measurement used to detect ignition. 50fps high resolution thermal imaging camera also used to measure surface temperatures.
Pressure	Vented system
Media	Explosive atmosphere mainly flammable gases, but vapours dusts and Hybrid mixtures. Friction materials include metals and ceramics.
Special features	Driven by 30kW variable speed induction motor. Frictional rubbing speeds up to 20m/s and loads up to 5kN. High speed video (40,000 fps) also available.

Experiments – Equipment

Experiments	Characterisation of ignition behaviour of hydrogen under different
	conditions. Factors include materials, operating conditions including
	state of H2.

Level of detail

Instrumentationgas temperature
pressure
fuel concentration
flamethermocouples
pressure transducers
mass flow meters
thermal imaging camera and video camera

Schedule	time needed for: preparation (2 days),
	conduction (2 hours per test), interpretation of experiments(0.5 day)
Tools	Excel Software, Sigmaplot and data logging equipment

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1 - 2

What kind of movable equipment is available and could be shared?

None – fixed facility

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Investigation of ignition of H2 by friction to establish optimum materials ect.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Unique apparatus with direct application for H2 equipment. Information essential as required by EU ATEX Directives

Which additional equipment could enhance the results of your experiments?

Adaptation of apparatus to investigate hydrogen as LH2.

Name	Impact test track
Туре	Impact test facility
Scale	Full scale tests
Experiments	Dynamic impact tests on components/ tanks etc.
Application field	H1-H6, V1-V2

Technical details

Dimensions	Twin gauge impact track wit maximum impact speed of 23 m/s and truck masses of 23 tonnes .
Temperatures	Ambient temperature
Pressure	-
Media	Tests completed with large diesel tanks.
Special features	Site suitable destructive testing leading to fire and explosion

Experiments – Equipment

- Experiments Testing of storage vessels
- Level of detail
- InstrumentationForce, strain, displacement and others as required, acquired at a
maximum logging rate of 10 MSamples per second. High speed video
also available.Scheduletime needed for:
preparation (3 weeks),
conduction (2 days per test),
interpretation of experiments(2 weeks)ToolsMicrolink, FAMOS software, Excel Software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

5

What kind of movable equipment is available and could be shared? *None*

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

Impact testing of storage vessels and assessment of resulting release/fireball.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance the results of your experiments?

.

-

Partner: INASMET

Facilities: - SSRT equipment

- NACE TM 01-77 testing equipment
- Fatigue testing equipment
- LEČO TCH 600
- SHS reactor

Name	SSRT equipment
Туре	autoclave+ tensile testing
Scale	lab scale
Experiments	studies on the effect of hydrogen on the behaviour of materials - hydrogen embrittlement
Application field	H1-H6, V3, V4, V5

Technical details

Dimensions	four equivalent SSRT machines with 2 lit Hastelloy C-276 autoclaves
Temperatures	up to 250°C
Pressure	up to 150 bar
Media	an testing (corrosive) media, liquid or gas
Special features	It consist of a universal materials testing equipment
Further particulars	-

Experiments	The sensitivity of materials to the Hydrogen Induced Cracking (HIC) is studied by means of a combined test in which a mechanical test is performed while hydrogen is produced on the specimen surface.
	The Slow Strain Rate Technique (SSRT) is used for the study of stress corrosion cracking. A tensile test is performed at very low strain rate with the specimen in contact with a corrosive environment and coupled to a potentiostat that applies a cathodic potential to the specimen. Hydrogen is electrochemically produced on the specimen surface during the test.
Level of detail	-
Instrumentation	load cell, displacement (LVDT), thermocouples, pressure

Schedule tests on evaluating the sensitivity of materials to SCC/HIC last from some hours up to one month.

Tools The tested specimen should be studied by optical and scanning electron microscopy in order to identify different fracture mode features.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

_

_

_

-

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Descriptions of experimental facilities 121/211

Name	NACE TM 01-77 testing equipment
Туре	corrosion cells + load applying rings
Scale	lab scale
Experiments	studies on the effect of hydrogen on the behaviour of materials - hydrogen embrittlement
Application field	H1-H6,V3, V4, V5

Technical details

Dimensions	Five desktop Rings for different load ranges
Temperatures	ambient
Pressure	atmospheric
Media	corrosive media with gas bubling (H_2S , others,)
Special features	It consist of a universal materials testing equipment specially designed for testing materials for oil applications (sea water+ H_2S)
Further particulars	-

Experiments	The sensitivity of materials to the Hydrogen Induced Cracking (HIC) is studied by means of a combined test in which a mechanical test is performed while hydrogen is produced on the specimen surface.
	In some cases the hydrogen is produced chemically. That is the case of test performed according to NACE TM 01-77 standard in which a tensile load is applied to the specimen immersed in a aqueous solution saturated with H_2S , this acid produced the hydrogen that diffuses into the material.
Level of detail	-
Instrumentation	displacement, load, time

Scheduletests on evaluating the sensitivity of materials to SCC/HIC last up to
one monthToolsThe tested specimen should be studied by optical and scanning
electron microscopy in order to identify different fracture mode features

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1.

_

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

_

Name	Fatigue testing equipment	
Туре	Servohydraulic universal tensile testing machine	
Scale	lab scale	
Experiments	studies on the effect of hydrogen on the behaviour of materials in fatigue – corrosion, hydrogen embrittleme	nt

Application field H1-H6, V3, V4, V5

Technical details

Dimensions	-
Temperatures	-
Pressure	-
Media	-
Special features	-
Further particulars	-

Experiments	The sensitivity of materials to the Hydrogen Induced Cracking (HIC) is studied by means of a combined test in which a mechanical test is performed while hydrogen is produced on the specimen surface. In this case the mechanical test used is a fatigue test and the production of hydrogen is generally electrochemical. For this purpose dynamic mechanical testing equipment is used.
Level of detail	-
Instrumentation	-

Schedule

Tools -

Further particulars -

Information for the preparation of integration

_

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? -What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

Descriptions of experimental facilities 125/211

Name	LECO TCH 600
Туре	-
Scale	lab scale
Experiments	chemical analysis of hydrogen in metals
Application field	H1-H6, V3, V4,V5

Technical details

Dimensions	-
Temperatures	-
Pressure	-
Media	-
Special features	-
Further particulars	-

Experiments	The presence of gases as nitrogen, oxygen and hydrogen in materials is limited to low values in metals. The analysis of these gases is performed by automatic equipments as the LECO TCH 600.
Level of detail	-
Instrumentation	temperature, pressure, flow (all incorporated to the equipment but not externally accessible).
Schedule	minutes
Tools	-
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

-

Name	SHS reactor
Туре	-
Scale	lab scale
Experiments	Metallic hydride production by SHS
Application field	НЗ

Technical details	
Dimensions	-
Temperatures	-
Pressure	-
Media	different gases (hydrogen, air, nitrogen, steam,)
Special features	-
Further particulars	-

Experiments	Metallic Hydride as hydrogen storage materials are produced by the Self-Propagating High-Temperature Synthesis (SHS) method.
Level of detail	-
Instrumentation	temperature, pressure, flow
Schedule	hours
Tools	-
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 1

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Which additional equipment could enhance your results?

-

Partner: INERIS

Facilities: - The "Basket"

- ISO-1m³ chamber, Dust-gas explosion room (DG1m3)
- 10 m³ chamber, Dust-gas explosion room (DG10m3)
- INERIS-100 m³ chamber, Dust-gas explosion room (DG100m3)
- Flame Acceleration Pad (FAP)
- Flexible Ignition Facilities (FIF)
- High pressure-high temperature-2 m3 sphere (HPT2m3)
- Burton 1000 b chamber, High pressure-high temperature 500 ml explosion chamber (HPT500ml)
- Open Fire Area (OFA)
- Unconfined Cloud Area (UCA)

Name	The "Basket"
Туре	large scale test area
Scale	large scale
Experiments	rupturing of confinements and investigation of fracturing and missiles
Application field	H1-H6, V2-V3

Technical details

Dimensions	4 meters large, 4 m long, 4 meters high
Temperatures	ambient
Pressure	ambient
Media	flammable liquid and gases
Special features	for typical volumes of a few tens of litres bursting with a maximum TNT equivalent of 1 kg
	mesh resistance to impact = 60 000 Joules
Further particulars	-

Experiments	investigation of the bursting of metallic confinements by using high speed video
	effects of the dynamics of the pressure rise
	effects of an external heating
Level of detail	-

HySafe – Safety of Hydrogen as an Energy Carrier

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	\pm 60 μ s

Schedule 2 technicians for 4 days typically

Tools

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

Provide a faster video system to tracks the cracks !

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

It is possible to investigate the dynamics of fracturing , missile effects and mitigation techniques (shields)

Which additional equipment could enhance your results?

Work out a practicable mean to measure more precisely the deformations.

Name	ISO-1 m³ chamber Dust-gas explosion room (DG1m3)	
Туре	vented or closed vessel	
Scale	large scale	- AND
Experiments	Kst and Kg measurements (Pmax)	
	turbulence/mixing diagnostic with aerodynamical probes	
	flame propagation diagnostic	with
	safety device tests like flame	arras

flame propagation diagnostic with pressure/temperature/ionisation gages safety device tests like flame arresters, vents, suppressors

Application field H1-H3, V1-V3

Technical details

Dimensions	1,37 m long and 0,95 m in diameter
Temperatures	ambient
Pressure	20 bar overpressure max
Media	flammable gases and dusts
Special features	fitted for Kst/Kg tests in accordance with European standard
	Even gaseous mixtures are produced by pneumatic injection $(\pm 0.2\% \text{vol.})$
Further particulars	a-variable ignition sources (coils, sparks, jets,) and position
	b-variable vent area (from 0 to 400 mm)
	c-possibility of coupling with pipes up to 400 mm in diameter

Experiments – Equipment

Experiments Apart from classical explosion violence measurements, this vessel is used to investigate flame propagation rates (flame trajectories and velocities, turbulence, flame temperatures...) in various configurations (closed, open, with a duct, connected to another vessel..). It has been recently used to investigate in details the relationships between internal and external explosions, the flame dynamics when coupled to a duct HySafe – Safety of Hydrogen as an Energy Carrier

and the incidence of particles on the turbulence field. Flame arresters, vents, suppressors are frequently tested with this vessel

Level of detail detailed information may be obtained but internal visualisation is difficult

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 100 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	\pm 0.2% abs (gas)
video	high speed motion	125 to 8000 fps	\pm 60 μ s
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
turbulence	in-house probes	0.2 to 100 m/s	\pm 5% range

Schedule

standard explosion violence of one product : 3 days for 2 technicians preparing a fully equipped test for combustion diagnostic in the isolated vessel : 2 days for 2 technicians

preparing a fully equipped test for combustion diagnostic in a vessel duct configuration: 7 days for 2 technicians

Tools standard

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

In-house techniques have been internally developed at lab scale to heat up very rapidly the atmosphere inside a vessel without heating the envelope (principle of a rapid compression machine). They need to be scaled up and adapted to perform explosion mitigation at higher temperature (flame arresters, venting...).

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of flame transmission from or towards a pipe.

Which additional equipment could enhance your results?

Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

Name	10 m³ chamber Dust-gas explosion room (DG10 m3)	
Туре	vented vessel	
Scale	large scale	
Experiments	turbulence/mixing diagnostic with in-house aerodynamical probes	
	flame propagation diagnostic with pressure/tem	perature/ionisation gages
	safety device tests like vents	, suppressors
Application field	H1-H3, V1-V3	

Technical details

Dimensions	5.83 m long and 1.6 m in diameter
Temperatures	ambient
Pressure	7 bar overpressure max
Media	flammable gases and dusts
Special features	4 flanges (800 and 1600 mm in diameter)
	Even gaseous mixtures are produced by pneumatic injection $(\pm 0.2\% \text{vol.})$ by multiple ports
Further particulars	a-variable ignition sources (coils, sparks, jets,) and position
	b-variable vent area (from 200 to 1600 mm)
	c-possibility of coupling with pipes up to 800 mm in diameter

Experiments	This vessel is used to investigate flame propagation rates (flame
	trajectories and velocities, turbulence, flame temperatures) in various
	configurations (open, with a duct, connected to another vessel). It has
	been recently used to investigate in details the relationships between
	internal and external explosions, the flame dynamics when coupled to
	a duct and the incidence of particles on the turbulence field. Flame
	vents, suppressors, barriers are regularly tested with this vessel.

Level of detail detailed information may be obtained either by probes or via internal visualisation

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	\pm 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	\pm 60 μ s
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
turbulence	in-house probes	0.2 to 100 m/s	<i>±</i> 5% range

Schedulepreparing a fully equipped test for combustion diagnostic in the isolated
vessel : 3 days for 2 technicians (1 test = ½ day with 2 techn.)preparing a fully equipped test for combustion diagnostic in a vessel

duct configuration: 10 days for 3 technicians (1 test = 1 day with 2 techn.)

Tools cranes to move the flanges or the vessel

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of flame transmission from or towards a pipe.

Which additional equipment could enhance your results?

Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

hi tall 3

Overview

Name	INERIS-100 m ³ chamber Dust-gas explosion room (DG100m3)			
Туре	vented vessel			e Sant
Scale	large scale	C.F.F.		A.
Experiments	<i>turbulence/mixing</i> <i>diagnostic with in-house</i> <i>aerodynamical probes and</i> <i>tomographic techniques</i>	a start and a start and a start a star		
	flame propagation diagnostic with	pressure/temp	perature/ionisatio	on gages
	safety device tests like vents, supp	pressors		
Application field	H1-H3, H5, V1-V3			

Technical details

Dimensions	10 m long and 3.5 m in diameter (square section)
Temperatures	ambient
Pressure	2 bar overpressure max
Media	flammable gases and dusts
Special features	vent area from 1 to 10 m²
	Even or stratified gaseous/dusts mixtures are produced by pneumatic injection ($\pm 0.2\%$ vol.) by multiple ports.
Further particulars	a-variable ignition sources (coils, sparks, jets,) and position
	<i>b-variable vent area (from 1 to 10 m²)</i>
	c-possibility of coupling with pipes up to 800 mm in diameter

Experiments	This vessel is used to investigate flame propagation rates (flame
	trajectories and velocities, turbulence, flame temperatures) in various
	configurations (open, with a duct, connected to another vessel). It has
	been recently used to investigate in details the relationships between
	internal and external explosions and the incidence of particles on the
	turbulence field. Flame vents, suppressors, barriers are tested with this
	vessel but also the resistance of structural components to blast.

HySafe – Safety of Hydrogen as an Energy Carrier

It is also used to investigate the stratification of gases and diffusion

Level of detail detailed information may be obtained either by probes or via internal visualisation and laser tomography (Ar ion laser + rotating miror)

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±0.5</i> °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers and tomography	0 to 100%	<i>±</i> 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	± 60 µs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
turbulence	in-house probes	0.2 to 100 m/s	±5% range

Schedule preparing a fully equipped test for combustion diagnostic in the isolated vessel : 5 days for 3 technicians

preparing a fully equipped test for combustion diagnostic in a vessel duct configuration: 20 days for 3 technicians

preparing a fully equipped test for diffusion of gases in the isolated vessel : 10 days for 2 technicians

Tools cranes to move the flanges or the vessel

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages, turbulence measurement and tomographic technique)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

We may investigate internal or external mixing field and flame dynamics by using tomography. However at such scale a much more powerful light source is required. It is partially available but the optics has to be designed.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of large scale flame development and instabilities.

Which additional equipment could enhance your results?

Cloud dynamics with powerful tomography. Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.
Name	Flame Acceleration Pad (FAP)	
Туре	pipes	
Scale	large scale	
Experiments	flame propagation in tubes and pipes fundamental studies	ITT
	vents and flame arrester testing	
	coupling with vessels is poss	sible
Application field	H1-H6, V1-V3	

Technical details

Dimensions	100, 250, 450, 700 and 800 mm diameter steel tubes; up to 30 m long for each diameter
Temperatures	ambient
Pressure	20 bar max.
Media	flammables gases and dusts
Special features	up to 24 ports for pressure measurements and flame detection along the pipes
Further particulars	a-varied internal ignition devices (sparks, coil, hot spot)
	b-special mass-flowmeter device to fill the duct very homogeneously

Experiments – Equipment

Experiments	investigation of flame dynamics and self acceleration. DDT analysis
	study of the efficiency of flame arresters by varying the flame velocity at the barrier
	flame dynamics in a system duct-vessel
Level of detail	flame trajectory and pressures, dynamics of the mitigation technique if any

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive device	0 to 200 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	±0.2% abs (gas)
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%

Schedule preparing a fully equipped test for combustion diagnostic in the isolated duct : 5 days for 2 technicians

preparing a fully equipped test for combustion diagnostic in a vessel duct configuration: 10 days for 3 technicians

Tools cranes

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This versatile equipment with the afore mentioned battery of equipments proved very useful for the investigation of flame dynamics especially in view of flame transmission from or towards a pipe. New injection techniques should be thought about to be able to master non homogeneous mixtures.

Which additional equipment could enhance your results?

Data reduction need to be refined to enable a better correlation between flame dynamics and pressure effects. In this view, software modelling is required but also better techniques to detect the flame.

Name	Flexible Ignition Facilities (FIF)	
Туре	small vessel with various igniters	
Scale	small scale	2 5
Experiments	investigation of the characteristics of "practical" ignition sources	
	analysis of the fundamental	s of flame initiation
Application field	H1-H6, V3-V4	

Technical details

Dimensions	chamber = tube 80 cm high, 10 cm wide, square, transparent, for gases and two phase mixtures
Temperatures	ambient
Pressure	ambient
Media	flammable gases and dusts
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	Investigation of the characteristics of "practical" ignition sources like electrostatic discharges up to several Joules, electrical sparks, impacts and friction sources, hot spot, laser heating,
	analysis of the fundamentals of flame initiation (point ignition, continuous and transient surface ignition, …).
Level of detail	extremely detailed information may be obtained including temperature and microcalorimetric techniques to measure the energy release by a given ignition source in the atmosphere.

Instrumentation

nature	principle	range	error
IR thermography	IR video/ 2 colour pyro.	200 to 2000 °C	<i>±</i> 30 °C
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
energy	in-house microcalorimetry	0 to 1000 J	<i>±</i> 1% range
pressure	piezoresistive device	0 to 1 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.2% abs (gas)
video	normal and high speed motion	25 to 8000 fps	\pm 60 μ s
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%
data acquisition	LECROY 1 GHz		

Schedule *minimum ignition curve: 5 days for 1 technician*

Tools

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

1 technicians

What kind of movable equipment is available and could be shared ?

Measuring techniques can be shared but training is required

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

A very high voltage supply equipment for electrostatics; UV detection and measurements.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

The high versatility of the laboratory and the possibility to mimic real ignition source and measure/analyse their characteristics.

Which additional equipment could enhance your results?

Prepare a very low energy electrical spark device and means to measure very low energies (below 0,3 mJ)

Name	High pressure-high temperature-2 m³ sphere (HPT2m3)	
Туре	closed vessel	
Scale	large scale	
Experiments	determination of flammable limits, auto- ignition delay and explosion parameters (dP/dt, Pmax, flame velocities) of gases and vapours under high pressu	ure and high temperature.
Application field	H1-H4, V1-V3	

Technical details

Dimensions	1,55 m diameter, steel sphere 65 mm thick
Temperatures	ambient to 200°C regulated
Pressure	0 - 30 bar in charge. 200 bar overpressure
Media	flammables gases and vapours
Special features	3 flanges 350mm diameter for gases and liquids inlet and outlet, pressure measurements, gases analysis, unique mixing device
Further particulars	varied internal ignition devices (sparks, coil, hot spot)

Experiments – Equipment

Experiments	closed volume explosion experiments in "ideal" spherical situation; level of accuracy equivalent to lab scale for flame diagnostic specially adapted to produce exotic mixtures
Level of detail	detailed information may be obtained either by probes or via internal visualisation

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers	0 to 100%	<i>±</i> 0.1% abs
video	normal and high speed motion	25 to 8000 fps	± 60 μs
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%

Schedule

preparation : 2 technicians for 5 days typically test : 2 technicians for 1 to 2 day(s)

Tools standard

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

Prepare an additional system to inject mists under pressure.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

This equipment with the afore mentioned battery of equipments proved very useful for the investigation of fundamental parameters of the propagation.

Which additional equipment could enhance your results?

Name	Burton 1000 b chamber	
	High pressure-high temperature 500 ml explosion chamber (HPT500ml)	
Туре	closed vessel	
Scale	small scale	
Experiments	maximum pressure measurements at very h temperatures with various mixtures	igh pressures and
	ignition behaviour (sparks, self-ignition,)	
Application field	H1-H4, H6, V2-V3	

Technical details

Dimensions	½ litre
Temperatures	up to 300 °C
Pressure	up to 1000 bar max explosion pressure
Media	flammable gases and liquids
Special features	mixing device
Further particulars	-

Experiments – Equipment

Experiments	explosion violence measurements and ignition test in abnormal conditions
Level of detail	detailed information may be obtained but internal visualisation is difficult

A.A

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	<i>±</i> 0.5 °C
pressure	piezoresistive device	0 to 1000 bar	<i>±</i> 0.1% range
gas analysis	Oxygen controllers and tomography	0 to 100%	\pm 0.2% abs (gas)
flame trajectory	in-house ionisation gages	0 to 2000 m/s	±1%

Schedule

explosion violence of one product and one set of conditions: 3 days for 1 technicians

Tools

special

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

1 technicians

_

What kind of movable equipment is available and could be shared ?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

The possibility to perform tests in very unusual situations

Which additional equipment could enhance your results?

Prepare a very low energy electrical spark device. A fast data acquisition system.

Name	Open Fire Area (OFA)
Туре	large scale test area
Scale	large scale
Experiments	ignition and fire of gaseous jets and liquid pools
Application field	H1-H6, V1-V3

Technical details	
Dimensions	20 meters large, 50 m long
Temperatures	ambient
Pressure	ambient
Media	flammable liquid and gases
Special features	experimental pool (5 m^2 , 0.4 m deep) for liquid fires
	possibility to produce large jets of more than 200 bar through a hole of more than 20 mm
	investigation of the fire of large static cloud (more than 200 m ³)
Further particulars	high pressure stand (up to 1000 bar)

Experiments – Equipment

Experiments	investigation of liquid fires
	investigation of jet fires under high pressure or of large static clouds
Level of detail	-

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
irradiance	thermopiles	up to 50 000 kW/m ²	<i>±</i> 5% range
turbulence measurement	In-house probes	0.2 to 100 m/s	<i>±</i> 5% range
video	normal and high speed	25 to 8000 fps	±60 μs
IR thermography	IR video/ 2 colour pyro.		

Schedule

assembling a jet experiment : 2 technicians for 2 days typically (one hour for a test)

assembling a static cloud experiment : 3 technicians for 4 days (a few hours for a test)

Tools

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

Develop a high speed irradiance measurement tool for highly transient phenomena.

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

The capacity to perform tests with large clouds and high pressures.

Which additional equipment could enhance your results?

Provide a larger very high pressure tank of larger volume for quasi stationary test and a HP compressor with a larger flowrate.

Name	Unconfined Cloud Area (UCA)
Туре	large scale test area
Scale	large scale
Experiments	fundamental studies on flammable gases and liquids releases from high pressure tanks
	unconfined explosions investigations
Application field	H1-H6, V1-V3

Technical details

Dimensions	30 meters large, 75 m long
Temperatures	ambient
Pressure	ambient
Media	flammable liquid and gases
Special features	experimental tank (5 m ³ , 40 bar) equipped with control and measurement settings (temperature, pressure, flowrate) and nozzles up to 150 mm)
	possibility to discharge smaller tanks (tens of litres) through nozzles up to 20 mm and pressures up to 700 bars
	experimental system to investigate the formation of very large clouds (including cryogenic spills up to a few kg/s) up to more than 200 m long and 100 m high
Further particulars	high pressure stand (up to 1000 bar)
	special data acquisition system 10 Hz, 220 channels with master/slaves computers

Experiments – Equipment

Experiments investigation of the dispersion plume and mist formation (droplet sizes) for high pressure gases (temperature, concentrations, aerodynamic and density fields)

investigation of the dispersion plume and mist formation (droplet sizes) medium pressure liquid releases and cryogenics (temperature, concentrations, aerodynamic and density fields)

investigation of the development of unconfined explosions in quiescent and turbulent situations (simultaneous measurement of turbulence, pressure flame position and combustion rate)

Level of detail

Instrumentation

nature	principle	range	error
temperature	thermocouple	-273 to 1700 K	±0.5 °C
pressure	piezoresistive devices	0 to 1000 bar	<i>±</i> 0.1% range
velocimetry and	PDA laser	1 to 400 m/s	±1% range
anemometry		2 to 600 µm	
turbulence measurement	in-house probes	0.2 to 100 m/s	\pm 5% range
video	normal and high speed motion	25 to 8000 fps	± 60 μs

Scheduleassembling a jet experiment : 2 technicians for 5 days typically (a few
hours for a test)preparing a large unconfined explosion : 3 technicians for 5 days
preparing the equipment for liquid spills : 3 technicians for 40 days (1
to 2 days per test)Toolscranes for heavy equipments and to erect the mast for the 220 gauges
measuring system

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments ?

2 to 3 technicians

What kind of movable equipment is available and could be shared ?

All standard measurement techniques (more difficult for ionisation gages and turbulence measurement) including the special device for cryogenic spills

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modification and or by applying additional instrumentation ?

We may investigate gas dynamics by using tomography and other optical techniques. However at such scale a powerful light source is required and large optics (system also useful for the explosion chambers)

• To prepare promotion and specialisation

What features/possibilities would you like to promote ?

These versatile equipments with the afore mentioned battery of equipments proved very useful for the investigation of cloud and flame dynamics especially for large momentum releases and cryogenic spills.

Which additional equipment could enhance your results?

Provide a larger very high pressure tank of larger volume for quasi stationary test and a HP compressor with a larger flow rate. Cloud dynamics with powerful tomography and other optical technique like interferometry. Partner: JRC

Facilities:- AMC Gas Reaction Controller
- Gravimetric analyser

- SenTeF
- SYSAF bunker

Contraction of the

Overview

Name	AMC Gas Reaction Controller (Currently installed and undergoing commissioning)	
Туре	Volumetric sorption measurement apparatus	
Scale	Laboratory scale	
Experiments	Hydrogen storage material testing	
Application field	H2 (Transport and distributior V5 (Standardisation and lega	n, refuelling stations) I requirements)

Technical details

Dimensions	Overall unit: 0.86 \times 0.76 \times 0.69 m Sample chamber: 2 cm ³
Temperatures	-60 to + 60°C (with a cryostat) and Room temperature to 500 $^{\circ}\!$
Pressure	0.01 to 200 bar
Media	Hydrogen, nitrogen and other inert gases
Special features	High-pressure testing of equilibrium pressure-composition isotherms over a wide temperature range. The system is fully automated and can perform repeated sorption cycles, at a range of temperatures, without user intervention.
Further particulars	Kinetic absorption and desorption measurements can be made using two gas flow meters.

Experiments - Equipment

Experiments	Assessment of potential hydrogen storage materials with respect to:
	1) Storage capacity (e.g. maximum wt%) – all materials
	2) PCT behaviour - intermetallic hydrides
	3) Absorption/desorption rates – all materials
	4) Cycling Stability – intermetallic and complex hydrides
Level of detail	-
Instrumentation	Overview:
	Reaction chambers - volume available for the sample ~2 cm 3
	Temperature control and measurement system – furnace, cryofurnace, thermocouples

Pressure measurement system - four HPO series pressure transducers Mass flow meters with maximum flow range for absorption =1000 sccm and for desorption = 500 sccm Control volume vessels Solenoid valves and control relays Mechanical vacuum pump Automation system Data logging/acquisition system and custom software program compatible with Labview® Schedule The time needed for preparation of experiments is about 1 day. The time needed for the conduction of experiments depends on what materials and which properties are to be studied. A typical PC isotherm for an intermetallic hydride will take less than 24 hours, whereas a long term cycling stability test could take months, depending on the number of cycles to be performed. The time needed for interpretation of experiments also depends on the properties being measured. The simple determination of a sample's plateau pressure would take less than 1 hour, but further analysis and fitting could take considerably longer.

HySafe – Safety of Hydrogen as an Energy Carrier

Tools

General laboratory software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments only 1 person is needed

What kind of movable equipment is available and could be shared?

The facility will be integrated in a multi-purpose laboratory at JRC-Petten and it is not scheduled to be moved after installation. Access to external users will be open in the frame of research training (e.g. PhD Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or applying additional instrumentation?

With additional temperature control equipment, e.g. powerful cryostat, measurements could be made at lower temperatures.

To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC is highly interested in participating with these testing facilities in validation exercises for the harmonisation of data, the identification of best practices and standardisation of test methods and procedures related to hydrogen storage capacity measurements of metal hydrides and porous materials.

Name	<i>Hiden Isochema Intelligent Gravimetric Analyser</i> (Installation scheduled October 2004)	IGA
Туре	Gravimetric sorption measurement apparatus	
Scale	Laboratory scale	
Experiments	Hydrogen storage material testing	
Application field	H2 (Transport and distribution, re V5. (Standardisation and legal red	fuelling stations) quirements)

Technical details

Dimensions	Overall unit: 1.8 × 0.5 × 1.8 m
Temperatures	-150°C to +500 ℃
Pressure	vacuum to 20 bar
Media	Hydrogen, nitrogen and other inert gases
Special features	The accurate determination of isothermal hydriding kinetics over a wide temperature range. This allows, for example, the derivation of the hydrogen diffusion coefficient in the case of intermetallic hydrides. Pressure-Composition isotherms can also be determined accurately. The system is fully automated and can perform repeated sorption cycles, at a range of temperatures, without user intervention. The system is fitted with a unit to transfer sensitive samples directly from a glove box to the sample chamber.

Experiments - Equipment

Experiments	Assessment of potential hydrogen storage materials with respect to:
	1) Storage capacity (eg, maximum wt%) – all materials
	2) PCT behaviour - intermetallic hydrides
	3) Ab / ad-sorption/desorption rates – all materials
	4) Cycling Stability – intermetallic and complex hydrides
Level of detail	-
Instrumentation	Overview
	Four Stream Thermal Gravimetric Analysis / Mass Spectrometer system - dynamic pressure control, multi-stream inlet for carrier and reactive mixtures, with an integrated dynamic sampling mass

spectrometer for evolved gas analysis.UHV stainless steel vessel; balance capacity up to 5g; pressure regulation via high resolution sensors. Data logging/acquisition system and custom software program compatible with Labview®.

Schedule the time needed for preparation of experiments is about 1 day;

the time needed for the conduction of experiments depends on what materials and which properties are to be studied. The determination of the sorption kinetics of an intermetallic hydride at one temperature could take less than 24 hours, whereas a long term cycling stability test could take months, depending on the number of cycles to be performed. The time taken for experiments will also be dependent on the temperature/s at which the measurements are to be made.

the time needed for interpretation of experiments also depends on the properties being measured. The simple determination of a sample's plateau pressure would take less than 1 hour, but further analysis and fitting could take considerably longer.

Tools

General laboratory software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments only 1 person is needed

What kind of movable equipment is available and could be shared?

The facility will be integrated in a multi-purpose laboratory at JRC-Petten and it is not scheduled to be moved after installation. Access to external users will be open in the frame of research training (e.g. PhD Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

JRC is considering upgrading its laboratories with a further instrument with the capability of performing temperature programmed desorption from liquid nitrogen temperatures. This could be used to quickly scan the hydrogen sorption properties of materials, as well as investigating more fundamental properties.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC is highly interested in participating with these testing facilities in validation exercises for the harmonisation of data, the identification of best practices and standardisation of test methods and procedures related to hydrogen storage capacity measurements of metal hydrides and porous materials.

Jverview		
Name	SenTeF (To be commissioned by end 2004)	→ t→ t→ t→ H ₂ , other gases
Туре	Environmental chamber for explosive/toxic gases	
Scale	Laboratory scale	
Experiments	Sensors performance testing	
Application field	H2 (Transport and distribution, refuelling stations) H4 (Vehicles powered with H2) H5 (Tunnels, parking and garage) V3 (Development and validation of hydrogen mitigation techniques) V5 (Standardisation, and legal requirements)	

Technical details

Dimensions	Facility: approx. 2.5 x 1 x 1.5 meters Test Chamber: approx. 2.5 litres volume
Temperatures	- 50 to +130 °C
Pressure	Test chamber: 0.5 to 1.3 bar Gas buffers: 5 bar
Media	hydrogen/air/water vapour + another gas (e.g. CO) by end 2004 + up to 4 other gases (e.g. CO ₂ , H ₂ S, SO ₂ , NH ₃) by mid 2005 + up to 2 other vapours (e.g. Ethanol, Isooctane) by mid 2005
Special features	a sophisticated gas handling and environmental control system allows simulating real ambient conditions (complex gas mixtures, altitudes). Designed in view of testing sensors response time and resistance to thermal shocks (upgrades 2005) and vibrations (upgrade possible).
Further particulars:	The system core is a 316 SS test chamber internally coated with Halar polymer for improved resistance against contamination, double walled for circulation of the heating/refrigerating fluid; the chamber is isolated from the laboratory environment by a further containment, streamed with Argon. Test gases and vapours (water, alcohols, alcanes) are released at concentrations down to ppm levels through gas and liquid mass flow controllers and evaporators. The gas composition is stabilised in buffers and can be determined with a 3-columns gas chromatograph equipped with multiple detectors. Humidity is measured with a chilled mirror hygrometer.

Experiments - Equipment

Experiments Assessment of hydrogen sensors performance with respect to:

- Sensitivity to target gas
- Influence of temperature, humidity and altitude (reduced pressure)
- Cross sensitivity to other gases/vapours

Instrumentation	TEST PARAMETER	INSTRUMENT TYPE	N. OF ITEMS	OPERATING PRINCIPLE	RANGE	ACCURACY
		Mass flow controllers	9	Thermal	Varying between 1.2-60 ml/min to 60-3000 ml/min	0.1 to 0.5 % full scale
		Liquid mass flow controllers	1	Thermal	0-10 g/h	0.2% full scale
		Controlled evaporator mixer (by mid 2005)	1	Heat exchange	10 g/h liquid, 1 l₀/min gas	0.2% full scale
	Atmosphere composition			TCD (PDD by mid	H ₂ : from 2 ppm, (100 ppb with PDD) to 100%	5% at 2 ppm
				2005)	CO: 2 ppm (with PDD) to 100%	5% at 2 ppm
		3-columns das			CO2: 5 ppm to 100%	5% at 5 ppm
		chromatograph	1	TCD	H ₂ S: 10 ppm to 100%	5% at 10 ppm
					SO ₂ : 10 ppm to 100%	5% at 10 ppm
					NH ₃ : 200 ppm to 100%	20% at 200 ppm
				FID	Alcohols/alcanes: 1 ppm to 100%	1% at 10 ppm
	Temperature	Circulating bath	1	Heat exchange	- 50 to 150°C	± 0.01°C
		PT100	5-6	Resistance	-200 to 500°C	± 0.1°C
	Humidity	Liquid flow meter	1	Thermal	0-5 g/h	0.2% full scale
					0-100 g/h	0.2% full scale
		Controlled evaporator mixers	1	Heat exchange	10 g/h liquid, 1 l _n /min gas	0.2% full scale
					100 g/h liquid, 10 l₀/min gas	0.2% full scale
		Hygrometer	1	Chill mirror	Dew/frost point: -50 to 100°C	±0.2°C
	Pressure (Gas buffers)	Transducer	2	Strain gage	0-10 bar abs	0.15% full scale
	Pressure Test chamber)	Transducer	1	Strain gage	0-1.6 bar abs	0.1 % full scale

Schedule

the facility is scheduled to be in operation by the end of 2004 the time needed for preparation of experiments will be about 1 day the time needed for conduction of experiments will depend on the test The sensors output data will be collected and visualised in real time, and recorded on general laboratory software platforms (Labview[®], Excel[®]).

Tools

general labs software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments 2 persons are needed

What kind of movable equipment is available and could be shared?

The facility will be integrated in a multi-purpose laboratory at JRC Petten, and is not scheduled to be moved after installation. Access to external users will be open in the frame of research training (e.g. Ph.D. Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

The system has been designed in view of two major upgrades:

- Installation of a <u>multiple test chamber with actuated sample holders</u> (foreseen in 2005), to enable the system to carry out the following tests:
 - sensors response time
 - reaction to sudden changes of environment (temperature, pressure, humidity)
 - resistance to thermal shocks/cycling
 - accelerated lifetime testing
- Installation of a <u>vibrating table</u>, to be used in combination with the existing 2.5 litres chamber for testing sensors performance under simulated on-vehicle use conditions.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC can provide assistance to companies developing hydrogen safety sensors in meeting the performance requirements demanded by users

JRC is highly interested in co-operating with <u>both</u> manufacturers and users, to help developing a unified procedure for testing the hydrogen sensors performance in a controlled environment.

Overview		10
Name	SYSAF high- pressure facility (SYSAF bunker) To be commissioned mid 2005	1
Туре	N ₂ -inertised room with pressure vessels	
Scale	Small to full scale	K. XV
Experiments	High-pressure cycling and permeation measurements on compressed H_2/CH_4 storage systems for vehicles	
Application field	H2-V4 (testing of distrib H3-V4 (testing of CGH ₂ H3-V5 (inputs to pre-no	oution components) vehicle systems) rmative research)

Technical details

Dimensions	Half-buried strongly reinforced concrete bunker with annexed gas storage area. 225 m^3 room (10 x 7.5 x 3 m^3) inertised using gased N_2 including:	
	- The pressure vessels containing the parts to be tested,	
	- A high-pressure compressor,	
	- Controlling equipment and instrumentation.	
Temperatures	ambient up to approx. 100°C	
Pressure	Vacuum (permeation tests) to 350 bar – Upgrade to ca. 800 bar foreseen	
Media	Methane (pure CH4), gaseous hydrogen. Helium, Argon as blanket gases	
Special features	Full-scale testing of CGH2 / natural gas vehicle tanks using the real gases.	
	Testing of other components of the gaseous hydrogen distribution chain shall be possible. The facility is remotely controlled. The gases are used in a closed-loop circuit between the facility and the storage area. The gas consumption and the amount vented in the atmosphere are minimised.	
Further particulars	 (a) Permeation measurements can be performed statically (at constant high pressure) or dynamically (during pressure-cycling) 	
	(b) Permeation tests carried out using gas chromatography	
	(c) Possibility of temperature measurements on the part being tested	

Experiments	Vehicle storage components (mainly tanks) are pressure-cycled for a pre-defined number of cycles. During the cycling test or after the test the permeation rate is measured using gas chromatography. A typical cycle will consist of 3 minutes filling time and ca. 20 minutes emptying to the low pressure. The results will be validated using existing standards and possibly used as input to pre-normative research.
Instrumentation	Measurement performances of the facility will be given at a later stage.
	Overview of instrumentation: Gas chromatograph with Pulse Discharge Detector, Thermocouples, High-pressure 3-stage piston compressor, Compressor cooling unit, H_2 /CH ₄ on the exhaust line of the inert blanket gas (for early detection of dangerously high permeation/leakage rates), H_2 , CH ₄ and O ₂ concentration sensors in facility room for safety purposes (doubled installation), Automation system including two independent PLC's and Labview [®] software for data acquisition, Closed circuit cameras and other safety-related devices.
Schedule	The time needed for preparation of experiments is about 5 days.
	The time needed for conduction of experiments depends essentially on the number of cycles. For instance, a 1500-cycle test will last about 25 days.
	A static permeation test will last a few hours.
	For all tests, data is collected in real time
Tools	general labs software

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments at least 3 persons are needed (two of whom accredited as operators)

What kind of movable equipment is available and could be shared?

The facility will be integrated in a multi-purpose laboratory at JRC Petten, and is not scheduled to be moved after installation. Access to external users will be open in the frame of research training (e.g. Ph.D. Thesis) and/or collaboration agreements with JRC.

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

Other components than vehicle tanks can be tested after some (minor) modifications in the mechanical set up.

An upgrade of the facility is foreseen in 2006 in order to increase the maximum static pressure from ca. 350 to ca. 800 bar.

Tests involving hydrogen / natural gas mixtures should be possible after some modifications.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

JRC is highly interested in co-operating with both manufacturers and users, to help developing procedures for testing hydrogen storage systems for vehicles and contributing to standardisation.

Partner: TNO

Facilities: – 1 litre vessel

- 20 litre vessel
- 500 litre vessel
- 1 m³ vessels
- 5 m³ vessel
- Gas explosion chamber
- IBBC Bunker
- FAST
- GEFEF
- Small scale blast simulator
- Large scale blast simulator
- Laboratory for ballistic research (LBO)
- Test Facility 3 (TF3)
 Large indoor rocket test stand

Name	1 litre vessel
Туре	closed bomb
Scale	lab scale
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
Application field	H1-H6 / V2, V4, V5

Technical details

Dimensions	1 litre

Temperatures hot water bath for the wall

_

- Pressure
- Media various flammable gasses and inerts
- Special features -
- Further particulars -

Experiments – Equipment

Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
Level of detail	-
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	-
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

Equipment easy to move

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

-

Which additional equipment could enhance the results of your experiments?

Name	20 litre vessel
Туре	closed bomb
Scale	lab scale
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
Application field	H1-H6 / V2, V4, V5

Technical details

Dimensions	20 liter
Temperatures	hot water bath for wall
Pressure	maximum static overpressure of 40 bar
Media	various flammable gasses and inerts
Special features	-
Further particulars	-

Experiments – Equipment

Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
Level of detail	-
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	Kuhner data-acquisition software

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

What kind of movable equipment is available and could be shared?

Equipment easy to move

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

_

Which additional equipment could enhance the results of your experiments?

Name	500 litre vessel	
Туре	closed bomb	0
Scale	lab/pilot scale	N INST
Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies	A LO STATE OF STATE
Application field	H1-H6 / V2-V5	

Technical details	
Dimensions	500 liter
Temperatures	atmospheric temperature
Pressure	-
Media	various flammable gases and inerts
Special features	Flanges enable to install instruments and bursting disks or vent covers etc.
Further particulars	-

Experiments – Equipment		
	Experiments	Closed bomb experiments, to measure explosion limits and ignition temperatures and energies
	Level of detail	-
	Instrumentation	gas temperature pressure gas composition
	Schedule	-
	Tools	-
	Further particulars	-
Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

What kind of movable equipment is available and could be shared?

Equipment easy to move

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	1 m³ vessel (P _{max} = 20 bar and 100 bar)	E
Туре	vessel (closed bomb)	
Scale	small scale	
Experiments	closed bomb experiments with - higher operating / initial pressure - other substances; for ex. pure oxygen - linked vessel systems (2 times	1 <i>m</i> ³)
Application field	H1-H6 / V2-V5	

Technical details

Dimensions	cylindrical vessels of 0,97 m I.D. and a length of 1,05 m
Temperatures	atmospheric temperature
Pressure	maximum static overpressure of 20 and 100 bar
Media	gases and dust
Special features	Flanges enable to install instruments and bursting disks or vent covers etc.
Further particulars	-

Experiments – Equipment

Experiments
 The 1-m³ explosion vessels are cylindrical vessels capable to withstand a maximum static overpressure of 20 and 100 bar. This makes it possible to do experiments with higher operating pressures or explosions with pure oxygen instead of air. The front of the vessel is closed by a door, the rear by a blind flange. If necessary the blind flange can be replaced by other flanges to enable the testing of bursting disks, vent covers etc. With the two 1 m³ vessels also linked vessel experiments can be performed. The vessel is operated at room temperature.
 As with the 5-m3 vessel, the 1-m3 explosion vessel can also be used

As with the 5-m3 vessel, the 1-m3 explosion vessel can also be used to determine the efficiency of equipment and protective systems intended for use in potentially explosive atmospheres. These include

	HySafe – Safety of Hydrogen as an Energy Carrier
	explosion suppression devices, explosion detectors, and pressure resistant devices.
Level of detail	-
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	The signals from the pressure gauges and thermocouples are transmitted to the SCADAS II Signal Conditioning and Data Acquisition System.
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

_

_

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	5 m³ vessel (gas/dust) P _{max} 15 bar
Туре	vessel (closed bomb)
Scale	medium scale
Experiments	test of equipment and protective systems intended for use in potentially explosive atmospheres
Application field	H1-H6 / V2-V5

Technical details

Dimensions	cylindrical 5 m³ vessel
Temperatures	room temperature
Pressure	maximum static overpressure of 15 bar
Media	gas and dust
Special features	Flanges enable to install instruments and bursting disks or vent covers etc.

Further particulars -

Experiments	The 5-m ³ explosion vessel is used to determine the efficiency of equipment and protective systems intended for use in potentially explosive atmospheres. These include explosion suppression devices, explosion detectors, and pressure resistant devices.
	The 5-m ³ explosion vessel is a cylindrical vessel, capable to withstand a maximum static overpressure of 15 bar. Flanges enable to install instruments and bursting disks or vent covers etc The vessel is operated at room temperature.
Level of detail	-
Instrumentation	gas temperature pressure gas composition

Schedule

Tools

Further particulars if appropriate

_

-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? 2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

gas, dust or hybrid mixtures can be applied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	Gas Explosion Chamber (GEC)
Туре	cubic shaped vessel
Scale	large scale
Experiments	test constructions that can reduce or protect against explosion overpressures; venting devices and explosion resis

evices and explosion resistant constructions can be tested

Application field H1-H6, V1-V5

Technical details

Dimensions	cubic shaped vessel of 36 m³ venting areas from about 2 to 5 m²
Temperatures	atmospheric temperatures
Pressure	maximum explosion overpressure of 1 bar
Media	gas
Special features	-
Further particulars	-

Experiments	The GEC is fitted with a gas supply and can be used to test constructions that can reduce or protect against explosion overpressures. Venting devices can be tested with venting areas from about 2 to 5 m^2 . Explosion resistant constructions can be tested with a maximum explosion overpressure of 1 bar.
Level of detail	-
Instrumentation	gas temperature pressure gas composition
Schedule	-

Tools

The signals from the pressure gauges, blast pencils and thermocouples are transmitted to the SCADAS II Signal Conditioning and Data Acquisition System.

Further particulars -

Information for the preparation of integration

Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	IBBC Bunker
Туре	reinforced concrete bunker
Scale	large scale
Experiments	vented gas explosions
Application field	H1-H6 / V1-V5

Technical details

Dimensions	<i>"kitchen" (20 m³) and "living room" (40 m³)</i>
Temperatures	room temperature
Pressure	P _{max} 0.35 bar
Media	gas
Special features	-
Further particulars	-

Experiments	The IBBC bunker was built to experiment with vented gas explosions in domestic applications. This reinforced concrete bunker has two chambers, which have the size and shape of a realistic kitchen (20 m ³) and living room (40 m ³). In the bunker, numerous venting experiments have been conducted. Openings in the walls of the bunker can be fitted with vent panels or brick walls in order to test their strength and venting efficiency.
Level of detail	-
Instrumentation	gas temperature pressure gas composition
Schedule	-
Tools	AutoReaGas TM is a CFD software package that consists of two CFD codes: a gas explosion simulator and a blast simulator. Both codes are

integrated in an interactive and user-friendly environment. The gas explosion simulator is capable of simulating the turbulent premixed combustion process in gas explosions. This process is the origin of blast effects. Given the blast source characteristics, the blast simulator is capable of computing the propagation of the blast wave in the vicinity of the explosion and the interaction with objects.

The gas dynamics of a gas explosion is simulated by the numerical solution of a full set of conservation equations, that constitutes a model for the gas dynamics, the turbulence and the fuel distribution. The propagation and interaction of blast with structures is simulated by numerical solution of conservation equations which constitute a model for inviscid gas dynamics. A Flux-Corrected Transport scheme is used to capture and preserve shocks.

Further particulars

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	FAST (Flame Acceleration STudy)
Туре	Open air gas explosion facility
Scale	large scale
Experiments	Flame propagation and blast wave experiments of gas explosions in open air
Application field	H1-H6 / V1-V5

Technical details

Dimensions	open field of approx. 70 x 70 m^2
Temperatures	atmospheric temperature
Pressure	-
Media	gas
Special features	-
Further particulars	-

Experiments	The FAST is a facility that enables a continuous monitoring of the flame propagation process in a gas explosion by pressure and temperature recording. Various models can be incorporated in the facility, such as a tunnel like structure or a geometric 3D grid of pipes.
Level of detail	-
Instrumentation	gas temperature pressure gas composition flame velocity (High speed) camera
Schedule	-

Tools AutoReaGas is a CFD software package that consists of two CFD codes: a gas explosion simulator and a blast simulator. Both codes are integrated in an interactive and user-friendly environment. The gas explosion simulator is capable of simulating the turbulent premixed combustion process in gas explosions. This process is the origin of blast effects. Given the blast source characteristics, the blast simulator is capable of computing the propagation of the blast wave in the vicinity of the explosion and the interaction with objects.

The gas dynamics of a gas explosion is simulated by the numerical solution of a full set of conservation equations, that constitutes a model for the gas dynamics, the turbulence and the fuel distribution. The propagation and interaction of blast with structures is simulated by numerical solution of conservation equations which constitute a model for inviscid gas dynamics. A Flux-Corrected Transport scheme is used to capture and preserve shocks.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

various models can be tested, such as:

- small scale tunnel model:
- 4 segments, each 2 x 0.5 x 0.25 m in dimension
- 3D geometrical grids

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Technical details

Dimensions	Basically, the facility consists of a gas circulation system with variable test tubes. The tubes are equipped with an ignition/explosion section.
	The standard operational conditions of the flow explosion facility are: - 0.25 - 24 m/s - 21, 50 and 100 mm tube diameter
Temperatures	25-300 °C
Pressure	up to 1.5 MPa
Media	various flammable gasses and inerts
Special features	-

Further particulars -

Experiments – Equipment

Experiments A unique gas flow explosion pilot plant for integrated studies on explosion control and process optimisation. The conditions in the tube with respect to temperature, pressure and flow rate can be set similar to those in the plant. Explosion limits for example, can thus be determined under actual circumstances encountered in industrial processes.
 The gas flow explosion facility enables research into the effect of the

following parameters on the indices that are related to the formation, ignition and deflagration characteristics of flammable gas mixtures in chemical and petrochemical installations:

- temperature and pressure,
- flow rate and flow direction,

	 mixture composition, catalytic materials, source of ignition and ignition strength, tube dimensions, and, obstacles within the flow or dead zones.
	The facility can also be used for more complex and fundamental studies as for example the effect of flow instabilities and precompression on deflagration characteristics and deflagration to detonation transition phenomena. Techniques like laser Doppler interferometry are available to characterise turbulence levels.)
Level of detail	-
Instrumentation	gas temperature (heat camera) pressure gas composition flame velocity Techniques like laser Doppler interferometry are available to characterise turbulence levels
Schedule	-
Tools	-
Further particulars	-

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

-

-

_

-

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	Small scale blast simulator
Туре	long tube
Scale	small scale
Experiments	visualize the interaction of shockwaves with structures
Application field	H1-H6 / V2, V4, V5

Technical details

Dimensions	overall length 22 m; driver section 3-m long, 13.5 x 13.5 cm² expanding to 40 x 40 cm²
Temperatures	atmospheric temperature
Pressure	max. peak overpressure 120 kPa (side-on) max. positive phase duration 55 ms
Media	air
Special features	-
Further particulars	-

Experiments	- the evaluation of civil and military equipment or structures to resist the blast environment of conventional explosions, i.e. caused by High-Explosives or fuel air, and nuclear explosions,
	 the improvement of hardening methods to protect equipment or structures against these effects.
Level of detail	-
Instrumentation	transducers, displacement, strain and acceleratiometers;
	optical techniques (Schlieren, differential and holographic interferometry) for flow visualization;
	high speed cameras for studying the failure modes
Schedule	-

Tools For the numerical simulation of three-dimensional blast-object interaction, the computational fluid dynamics code BLAST-3D has been developed. This code solves the Euler equations, which describe inviscid compressible flow. The Flux-Corrected Transport scheme is used for optimum description of shocks and contact discontinuities. The code has the capability to calculate the pressure-, density-, and temperature-distribution around objects and to display velocity vector plots of the flow field. The code is also available as a sub-routine in the code AutoReaGas[™], which is used to simulate vapour cloud explosions and the explosion blast propagation in arbitrary environments.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

1

_

_

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	Large scale Blast simulator
Туре	long tube
Scale	medium scale
Experiments	blast wave response in atmosphere
Application field	H1-H6 / V2, V4, V5

Technical details

Dimensions	overall length 63 m; driver section 3-m long, 0.3 m diameter expanding to 1-m and 2-m diameter
Temperatures	atmospheric temperature
Pressure	max. peak overpressure 200 kPa (side-on) at 1-m diameter sect. max. peak overpr. 60 kPa (side-on)/120 kPa (face-on) at tube end. max positive phase duration 60 ms.
Media	air
Special features	-
Further particulars	-

Experiments	studying blast wave/structure interactions
	target load and structural response measurements
	testing of window panes of different type and dimensions to determine explosion resistance capabilities
	determination of the dynamic behaviour of brick walls
	blast hardness trails on blast-resistant walls and doors
	blast hardness trails on scale models and small full scale models (gas masks)
	studying the effectiveness of blast walls in reducing impulse noise from large caliber weapons
Level of detail	-

	HySafe – Safety of Hydrogen as an Energy Carrier
Instrumentation	pressure transducers, strain gauges and accelerometers for target load and structural response measurements
	high-speed camera's for studying failure modes
Schedule	-
Tools	For the numerical simulation of three-dimensional blast-object interaction, the computational fluid dynamics code BLAST-3D has been developed. This code solves the Euler equations, which describe inviscid compressible flow. The Flux-Corrected Transport scheme is used for optimum description of shocks and contact discontinuities. The code has the capability to calculate the pressure-, density-, and temperature-distribution around objects and to display velocity vector plots of the flow field. The code is also available as a sub-routine in the code AutoReaGas TM , which is used to simulate vapour cloud explosions and the explosion blast propagation in arbitrary environments.

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

2

-

_

What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

-

Name	Laboratory for Ballistic Research (LBO)
Туре	internal firing ranges and a massive target bunker
Scale	medium scale
Experiments	In the target bunker and large caliber firing range, kinetic energy projectiles can be fired at targets.
Application field	H1-H6 / V2, V4, V5

Technical details	
Dimensions	-
Temperatures	-
Pressure	The target bunker is designed and proven to withstand detonations of up to 25 kg of high explosives.
Media	-
Special features	The maximum attainable velocity is 2500 m/s for a 0.5-kg launch package.
Further particulars	-

Experiments	In the target bunker and large caliber firing range, kinetic energy projectiles up to and including 40 mm can be fired at targets that may contain explosives. Fragmenting ammunition up to 76 mm and weapon systems up to 105 mm can be evaluated.
	The target bunker is designed and proven to withstand detonations of up to 25 kg of high explosives. In addition to standardized guns and accelerators, the laboratory has 29, 50 and 78 mm laboratory powder guns available. The maximum attainable velocity is 2500 m/s for a 0.5- kg launch package. A vacuum target chamber is available for studying material properties under impact conditions.
Level of detail	-
Instrumentation	The experimental facilities are extensively instrumented to facilitate data acquisition and analysis.

Schedule

Tools -

Further particulars -

Information for the preparation of integration

_

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments? -What kind of movable equipment is available and could be shared?

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

impact of fragments on fuel tanks or cylinders can be studied

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Name	Test Facility 3 (TF3)	15			
Туре	H2/O2 igniter test facility				
Scale	full scale		L IMa		- M
Experiments	Testing small rocket motors, igniter devices that require I hydrogen technology	rs (including aco nydrogen (or oxy	ustic igniters), c rgen) such as fo	combustors and or development	l other s in
Application field	H2/H3/H6-V2/V3				

Technical details	
Dimensions	The TF3 has a test unit which is 4 by 6 meters and 2.5m tall.
Temperatures	The TF3 operates at ambient temperature
Pressure	The TF3 can deliver pressures from 0-220 bar with an increase to 300 bar possible
Media	hydrogen, oxygen, nitrogen
Special features	TF3 can provide high mass flow rates of hydrogen and oxygen in very wide pressure ranges. The hydrogen storage is 240 n-m ³ , oxygen storage is 240 n-m ³ .
Further particulars	TF3 has a versatile automatic control and data acquisition system that can record events at high frequencies. Standard measurements are measurements of pressure, temperature, and force. Additional measurements (e.g. spectroscopic measurements) are possible. Normal video recording of test runs is standard, high speed cameras are available for special test runs.

Experiments – Equipment

Experiments This facility is in operation for experimental propulsion tests. The performance of the Vinci motor igniter (H2/O2) has been tested using this facility. The TF3 is equipped with a gas supply system which can supply oxygen, hydrogen and nitrogen with feed pressures up to 22 MPa. The maximum obtainable mass flow rates for the Vinci test set up and other relevant characteristics are 100, 20 and 100g/sec respectively.

Level of detail

Instrumentation	gas temperature pressure gas composition velocity force/thrust gas density	thermocouples, thermographic camera piezoelectric, piezoresistance mass spectrometer optical piezoelectric Schlieren camera	
Schedule	Between 1-4 weeks for preparation of new experiments and 2 days-1 week for execution of repeat experiments.		
Tools	TNO developed SMART software (Signal Modification Analysing and Reduction Tool) for data interpretation . MASTER database for recording/tracking instrumentation calibrations ensuring a high precision level.		
Further particulars	National Instruments DAQ PC system with 64 channels. The TF3 is fully computer controlled and is suitable for executing hydrogen experiments with an associated medium-high risk. Instrument calibration can be performed in-house.		

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Minimum of 2 persons for preparation and execution of experiments.

What kind of movable equipment is available and could be shared?

None easily

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

The TF3 has a flexible set-up and is designed for a wide range of experiments with varying set-ups and instrumentation.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

A well equipped workshop is present on site for the performance of any required repairs/modifications to the facility. The TF3 has a high H2 massflow with the possibility of conducting experiments involving hydrogen ignition.

Name	Large Indoor Rocket Test Stand	
Туре	rocket test facility	
Scale	full scale	
Experiments	Used for testing (large) rocket motors, ramjets, ducted rockets and for special activities, like combustion research, simulation of aerodynamic scaled-down rockets, launc	heating, or base pressure measurements on there's or boosters.

Application field H2/H3-V2/V3

Technical details

Dimensions	tunnel section dimensions: 4x3.5x30 m			
Temperatures	ambient to 2000 K			
Pressure	0-70 bar			
Media	hydrogen, oxygen, nitrogen, (dry) air, methane, ethylene, additional gases possible			
Special features	gas supply d	etails:		
	Hydrogen Oxygen Nitrogen Air Methane	Flow Rate (kg/s) 0.05 1.6 0,06 10 0.3	Storage Capacity (kg) 2.5 100 10 900 16	Pressure (MPa) up to 7 MPa up to 7 MPa up to 20 MPa up to 7 MPa up to 7 MPa
Further particulars	It is possible ratios. At the precisely con gases up 200	to mix the air ai same time to to strolled. A heate 00 K.	nd other gases in preci otal mass flow rate and r allows heating of air,	sely controlled pressure can be or mixtures of

Experiments – Equipment

Experiments The indoor test facility is primarily designed for static firing of tactical missile rocket motors to assess the service lifetime of rocket motors.

Level of detail	-		
Instrumentation	gas temperature pressure gas composition velocity force/thrust gas density	thermocouples, thermographic camera piezoelectric, piezoresistance mass spectrometer optical piezoelectric Schlieren camera	
Schedule	The time needed for preparation, conduction, interpretation of experiments is dependant on the type of experiment and the data acquired. Typically 3 days preparation and 2 days interpretation		
Tools	TNO developed SMART software (Signal Modification Analysing and Reduction Tool) for data interpretation. MASTER database for recording/tracking instrumentation calibrations ensuring a high precision level.		
Further particulars	Withstands explosions of up to 40 dB. Active ven Data-acquisition of thrus 100 channels up to 100 channels up to 500 kHz calibration can be perfor	of 10 kg TNT equivalent. Sound level reduction ting system, toxic gases detection possible. st, pressure and temperature is feasible with: kHz (HP), 10 channels up to 1 MHz (NI) or 100 (NI). High speed video recording. Instrument rmed in-house.	

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

Minimum of 2 persons for preparation and execution of experiments.

What kind of movable equipment is available and could be shared?

None easily

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

With modifications this facility can be used for performing high risk tests on hydrogen systems and parts thereof (valves, regulators...).

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

A well equipped workshop is present on site for the performance of any required repairs/modifications to the facility.

Partner: UNIPI

Facilities: - CVE

Name	CVE	
Туре	Vented room	
Scale	large scale	
Experiments	studies on vented explosions	
Application field	V1 (Hydrogen release, mixing, and distribution),	

Application field V1 (Hydrogen release, mixing, and distribution), V3 (Development and validation of hydrogen mitigation techniques) V5 (Standardisation and legal requirements)

Technical details

27 m ³ vented room
-
maximum design overpressure 200 mbar
hydrogen-air and methane-air mixtures
the size of the camber allow to simulate real ambient behaviours in case of explosion and to extrapolate the minimum safety value for the vent area as a function of expected hydrogen concentration
 (a) two side of the chamber entirely covered with panes of glass (upper and one lateral sides) in order to view and record the flame's shape propagation (b) variable vent area (c) variable number and location of the ignition points (d) variable number of concentration measurement points

Experiments - Equipment

Experiments hydrogen-air atmospheres vented explosion with uniform or non uniform initial condition; some test variables are (1) vent area; (2) hydrogen concentration; (3) number and location of ignition points (we have eight different ignition points inside the CVE)

Level of detail

Instrumentation

INSTRUMENT TYPE	N. OF ITEMS	MEASURING PRINCIPLE	RANGE	OUTPUT	MAXIMUM ERROR
Flow meter	1	Turbine	6-100 Nm ³ /h	0.4-7 Hz	1.5 % of the
					range
Flow meter	1	variable area	0-19 NI/sec	4-20 mA	0.8 % of the
					range
Concentration	6	Thermal	0-20 %vol.	4-20 mA	3 % of the
analyser		conductibility			range
Pressure	3	Piezoelectric	0-5 bar	4-20 mA	0.3 % of the
transducer					range
Digital camera	2		25 fps		

-

HySafe – *Safety of Hydrogen as an Energy Carrier the time needed for preparation of experiments is about 1 day;*

the time needed for conduction of experiments is about 30 minutes (aerosol immission 10 minutes; gas immission 10 minutes; a few cycle of gas concentration measurements 10 minutes);

the time needed for interpretation of experiments is about 1 hour (assembly and analysis of digital camera's recordings, interpretation of pressure transducer's data, extrapolation of the correlation between explosion pressure and vent area, and hydrogen concentration data)

Tools general labs software

Further particulars

Schedule

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

To prepare/conduct experiments only 3-5 persons are needed

What kind of movable equipment is available and could be shared?

All measurement devices and instrumentation (pressure transducers, flow meter, concentration analyser and so on)

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or y applying additional instrumentation?

In order to perform a comparison between flammable gases, besides hydrogen vented explosions in the CVE we could carry out also methane-air vented explosions (modification of the gas concentration analyser's calibration curve needed).

In addition we could carry out also study/check on the safety of other hydrogen applications: by introducing an element in the CVE (hydrogen sensor, fuel cell, etc.) we can measure hydrogen leakages, pressure waves generated in case of explosion, and so on.

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

The exchange of personnel between the partners or the employee of person from other University

The production of spreading material, in particular explosion behaviour movies.

Which additional equipment could enhance the results of your experiments?

With specific concentration measurement devices we could carry out also explosions of hydrogen mixed to methane atmospheres.

Partner: WUT

Facilities: - WUT Detonation Tube

Name	WUT Detonation Tube
Туре	square cross- section tube
Scale	lab scale
Experiments	studies on

ents studies on hydrogen fast deflagrations, detonations, DDT, explosion initiation, mitigation of detonations

Application field H1,H2,H3,H4, V2,V3

Technical details

- Dimensions Detonation tube consists of a 1 m long booster and 8 m long square cross-section channel with internal dimensions 110×110 mm
- Temperatures room initial temperature
- Pressure up to 0.1 MPa initial pressure

Media hydrogen, air, nitrogen, oxygen, argon, helium, carbon dioxide

Special features The booster is filled with the oxy-acetylene stoichiometric mixture, which ignited, by a 1 J electric spark rapidly detonates initiating in turn detonation in the acceptor mixture in the main channel. A number of piezo-electric pressure transducers are fitted into the channel to monitor detonation and shock propagation. An X-band radar Doppler unit is also used for continuous monitoring of the detonation velocity. The Doppler unit is located at the end of the channel.

Further particulars

Experiments – Equipment

Experiments studies on hydrogen fast deflagrations, detonations, DDT, explosion initiation, mitigation of detonations by diffraction, heat and momentum losses, initiation of detonation

- Level of detail
- Instrumentationpressurepiezoelectricvelocitymicrowave Doppler anemometerflame luminosityphotodiodesflame positionion probesvisualizationSchlieren instrumentation

Descriptions of experimental facilities 210/211

Schedule operational any time

Tools in-house high speed data acquisition system with software

Further particulars -

Information for the preparation of integration

• Exchange of instruments and personnel

How many persons are needed to prepare/conduct experiments?

At least 2 people are needed to prepare/conduct experiments

What kind of movable equipment is available and could be shared?

Microwave Doppler anemometer and high speed data acquisition system could be shared

• To prepare filling possible gaps

What kind of experiments/tests could be performed in this facility after minor modifications and/or by applying additional instrumentation?

High speed visualization of deflagrations and detonations could be performed in this facility after applying high speed digital camera (not available).

Chemical reaction progress visualization could be performed after applying PLIF instrumentation (not available).

• To prepare promotion and specialisation

What features/possibilities would you like to promote?

Experiments conducted on the facility could be used for validation of numerical codes related to gas detonations: in particular the validation of detonation initiation, DDT, propagation in obstructed channels and mitigation, using following results:

- Pressure profiles, continuous velocity record, schlieren pictures for unsteady cases of detonation mitigation by inert gas pockets
- pressure profiles, velocity record, schlieren pictures for hydrogen-air and hydrogen-oxygen detonation propagation,
- pressure profiles for experiments with detonation initiation by incident shock wave

Which additional equipment could enhance the results of your experiments?

-

Website presentation

Additional material to be presented on the HySafe Website

Pdf files of the articles:

Dąbkowski A., Kozak A., Teodorczyk A.:The Initiation of Gaseous Detonations in H_2 - O_2 Mixtures by Incident Shock Wave

P.Buraczewski, A.Dąbkowski, A.Kozak, A.Teodorczyk:The Influence of Inert Gas Pockets on Propagation of Gaseous Detonations