SBEP-V3 DESCRIPTION

SBEP-V3: INERIS Test 6c Dispersion of a slow vertical hydrogen jet in a garage-like room

EXPERIMENTAL DESCRIPTION

Geometrical description of the facility

The INERIS gallery facility, which is built inside a rock [2], has the shape of a rectangular box with a small slope in the length and width directions, as described in [1]. The facility average dimensions are summarized in table 1.

Figure 1 shows the facility as an ideal box, for which the average dimensions of table 1 have been used. Figure 1 also shows the coordinate system, the location of the openings at the front side face, the location of the source as well as the location of the concentration sensors.

Width (m)	3.780
Length (m)	7.200
Height (m)	2.880
Ground area (m ²)	27.216
Effective volume (m^3)	78 382

Table 1: Experimental facility's average dimensions

Figure 1: Experimental facility. Shown are the openings at the front side, the source and the concentration sensors.

The following figures give the front side view, Figure 2, and the length side view, Figure 3, of the experimental facility. The roughness size on the left, right and bottom faces of the facility is between 5 mm and 10 mm.

Figure 2: The facility's front side view (plane y = 0)

Figure 3: The facility's length side view (plane x = 0)

Experimental conditions

Release conditions

Hydrogen will be released through an orifice on top of a stabilization chamber (release chamber) as shown in Figure 4. The H_2 outlet orifice will be a straight hole of 3 mm thickness. Homogenization is obtained using a dispersion bed. The dimension of the dispersion bed particles will be between 10 to 15 mm (diameter) and the dispersion bed will have a height of between 30 to 40 mm. The grid at the bottom of the dispersion bed is located at half height of the chamber (132.5 mm). The internal diameter of the chamber is 120 mm and its height is 265 mm. The hydrogen flow will carry very fine droplets of ammonium chloride to allow visualization with a laser. The chamber location is shown in Figures 1 and 2.

Figure 4: The stabilization chamber

Hydrogen release conditions are summarized in the following table.

Test	Release	Filling	Release	Release	Orifice	Exit	Ventilation
	direction	temperature	mass	duration	diameter	velocity	
		(°C)	flow	(s)	(mm)	(m/s)	
			rate				
			(mg/s)				
6C	Vertical	15	1000	240	20	38.0	None
	upwards						(Opening 1
							is closed)
6N	Vertical	15	1000	240	20	38.0	Natural
	upwards						through
							opening 1

Table 2: Hydrogen release conditions for tests 6C and 6N (in both cases openings 2
and 3 are open)

Ventilation conditions

No ventilation will be provided for test 6C (C stands for confined). The increasing pressure inside the facility, due to the inlet flow rate, will be controlled through openings 2 & 3 located at the front of the facility as shown in Figures 1 and 5. Opening 1 will be sealed during the experiment.

Figure 5: Location of the openings (front view), note that opening 1 will be sealed during the experiment

Initial conditions

The experimental facility will be filled with air at temperature of 15 0 C while the atmosphere will be quiescent. The facility's walls will be at the same temperature (15 0 C) while the curtain at the entrance will be hermetically closed.

Measurements

Concentration sensors

The locations of the concentration sensors are shown in Figure 1.

The measurement error is expected to be less than 1%. Table 3 summarizes the sensors location and the location of openings 1, 2 and 3 with the x-y-z axes located at the bottom of the release chamber.

	X (cm)	Y (cm)	Z (cm)
Chamber size	378	720	288
Source location	0	0	0
Opening 1 centre location	180	-380	273
Opening 2 centre location	7,5	-380	7,5
Opening 3 centre location	-7,5	-380	7,5
Sensor 1 location	0	0	283
Sensor 2 location	10	0	283
Sensor 3 location	20	0	283
Sensor 4 location	40	0	283
Sensor 5 location	90	0	283
Sensor 6 location	140	0	283
Sensor 7 location	190	0	283
Sensor 8 location	140	0	268

Sensor 9 location	140	0	238
Sensor 10 location	140	0	188
Sensor 11 location	140	0	138
Sensor 12 location	140	0	88
Sensor 13 location	0	0	268
Sensor 14 location	0	0	238
Sensor 15 location	0	0	188
Sensor 16 location	0	0	138

Table 3: Sensors and openings location

Video recording

A laser beam will be used to light the flow (H2 + ammonium chlorine) in the plane y = 0, see Figure 1. Visualization of the release on this plane will be performed by video recording through a camera placed at the front side face of the facility (figure 3).

Temperature measurements

Temperature has been measured in the mixing tank, prior to the stabilization chamber, and at the facility centre. Recordings are available in a separate EXCEL file.

Output requirements for modelers

Test 6C will be modeled.

The computational time is set to 5400 seconds.

Turbulence should be modeled with the Standard k-e-model.

To remove grid dependencies all modelers should use the following grid:

X-grid	lines:	30				
0.00	0000 0.	306667 0	.613333	0.920000	1.157021	1.337774
1.476286	1.582429	1.663766	1.726095	1.77385	9 1.810460	1.840000
1.860000	1.880000	1.900000	1.920000	1.94000	0 1.969541	2.006142
2.053905	2.116234	2.197571	2.303714	2.44222	6 2.622979	2.860000
3.166667	3.473334	3.780000				
Y-grid	lines:	47				
-0.90	0000 -0.	600000 -0.	300000	0.000000	0.300000	0.600000
0.900000	1.200000	1.500000	1.800000	2.10000	0 2.400000	2.700000
2.935445	3.123089	3.271814	3.389692	3.48312	1 3.557173	3.615865
3.662385	3.699256	3.728479	3.750000	3.77000	0 3.790000	3.810000
3.830000	3.850000	3.872008	3.902488	3.94176	8 3.992385	4.057614
4.141672	4.249994	4.389584	4.569467	4.80000	0 5.100000	5.400000
5.700000	6.000000	6.300000	6.600000	6.900000	7.200000	
Z-grid	lines:	34				
-2.8	80000	-2.827000	-2.774	LOOO -:	2.721000	-2.668000
-2.615000	-2.5531	L12 -2.48	9537 -2	.421489	-2.348653	-2.270692
-2.187246	-2.0979	929 -2.00	0000 -1	.900000	-1.800000	-1.700000
-1.600000	-1.5000	000 -1.40	0000 -1	.300000	-1.200000	-1.100000
-1.000000	-0.9000	000 -0.80	0000 -0	.700000	-0.600000	-0.500000
-0.400000	-0.3000	000 -0.200	000 -0.1	00000 0	.000000	
Number	of contr	ol volumes		:	44022	
Number	of node	points		:	52080	

For the diffusion phase after the release the following gird can be used alternatively:

```
X-grid lines:
                    10
                         0.840000
     0.000000 0.420000
                                     1.260000
                                               1.680000
                                                          2.100000
2.520000 2.940000 3.360000 3.780000
   Y-grid lines:
                    19
                                              0.90000
     -0.900000 -0.450000
                          0.000000
                                    0.450000
                                                          1.350000
1.800000 2.250000 2.700000 3.150000 3.600000 4.050000
                                                          4.500000
4.950000 5.400000 5.850000 6.300000 6.750000 7.200000
   Z-grid lines:
                    30
                            -2.681379
                 -2.780690
                                        -2.582069
                                                     -2.482759
     -2.880000
2.383449 -2.284138 -2.184828 -2.085518 -1.986207
                                                    -1.886897
                                                                 _
                                                     -1.291035
1.787587
         -1.688276
                    -1.588966
                              -1.489656
                                          -1.390345
                                                                 _
                               -0.893794
                                                     -0.695173
1.191725
         -1.092414
                    -0.993104
                                          -0.794483
                    -0.397242
                                -0.297932
0.595863
          -0.496552
                                             -0.198621
                                                        -0.099311
0.000000
   Number of control volumes
                                               4698
                                        :
                                        :
                                               6820
   Number of node points
```

Results to be reported by participants

The following list contains the specification of results requested from the participants. These results were included in different files, which were uploaded to the HySafe web page at a reserved section only accessible by partners (HySafe \rightarrow Work packages \rightarrow WP3 \rightarrow SBEPS).

Description	Document Name
A document containing a description of the	SBEP_INR6C_ORG.doc
applied modeling methodology such as	
model specifications, initial and boundary	
conditions, numerical specifications, code	
used, grid specifications, computer	
equipment used, CPU time	
The document should also contain a figure	
of the predicted concentration contours plot	
on the plane $y = 0$ at time 240 seconds	
A file with 4 columns as follows (the first	SBEP_INR6C_ORG_1.xls
row should have the headings indicated	
below):	
1. Time (s)	
2. Total H2 mass (g)	
3. Flammable mass in (g) (volume	
between LFL and UFL)	
4. Flammable volume in (m3) (volume	
between LFL and UFL)	
5. H2 mass flow rate (g/s) through	
openings 2 and 3 (total value for	
both)	
A file with 17 columns as follows (the first	SBEP_INR6C_ORG_2.xls
row should have the headings indicated	
below):	
1. Time (s)	
2. H2 concentration (vol. %) at sensor	
1	
1/. H2 concentration (vol. %) at sensor	

16	
Video showing the evolution of	SBEP_INR6C_ORG.avi
concentration field on the plane $y = 0$	

Note that ORG stands for the participant organization name. In case of submitting results of more than one code or model the participant is advised to include lower case letters (a, b, c...) in the acronym ORG (for example: SBEP_INR6C_NCSRDa.doc, SBEP_INR6C_NCSRDb.doc).

REFERENCES

- 1. "Compilation of description of experimental facilities", Deliverable 9, HYSAFE project. Lead participant FZJ
- 2. HYSAFE-INSHYDE PROJECT, "Hydrogen release in a chamber with a low flow rate", Report for pre-test calculations (DRAFT_2), INERIS, 04/07/05