Explosion Hazards of Hydrogen-Air Mixtures

Professor John H.S. Lee McGill University, Montreal, Canada

Hydrogen Safety Issues

- Wide spread use of hydrogen requires significant efforts to resolve safety issues
- Hydrogen is already used extensively in many industrial applications (but general public not exposed to the dangers)
- Extensive research efforts have already been devoted to hydrogen safety issues
- Post-Three Mile Island accident information not widely disseminated

Hydrogen Safety Research

BEFORE HYDROGEN CAN BE USED AS A COMMON ENERGY CARRIER:

- Achieve public acceptance of hydrogen-technologies
- Provide at least the same level of safety, reliability, comfort as today's fossil fuels
- No solutions are available in terms of widely accepted standards, methodologies, mitigation techniques and regulations)

Hydrogen and today's fuels

- Qualitative comparison of "Safety profiles"
- Properties of hydrogen are different from today's fuels
 - H₂ is less dangerous in terms of thermal and fire hazards,
 - may be responsible for stronger pressure effects

Safety Issues

- To evaluate hydrogen safety the following set of issues should be addressed for each of the applications
 - Hydrogen release, mixing, and distribution
 - Thermal, pressure, and missile effects from H₂ fires and H₂-air cloud explosions
 - Mitigation techniques for detection, dilution, and removal of hydrogen
 - Risk evaluation, both specific and in comparison with today's fossil energy carriers
 - Standardization, and regulatory issues

Objectives

- To contribute to common understanding and approaches for addressing hydrogen safety issues
- To integrate experience and knowledge on hydrogen safety
- To integrate and harmonise the fragmented research base
- To provide contributions to safety requirements, standards and codes of practice
- To contribute to an improved technical culture on handling hydrogen as an energy carrier
- To promote public acceptance of hydrogen technologies

Accident scenarios

Unconfined Explosions

major rapid release into the atmosphere

Confined Explosions

- leakage of H₂ into buildings
- contamination of high pressure H₂ storage facilities by air

Hindenburg (May 6, 1937)

- Lakehurst (New Jersey)
- Fired started near tail during landing
- Flame spread ~ 50 m/s
- Ship was 803 ft. ~ 245 m long
- Destruction completed in 32 seconds
- 36 lives lost

Crescent City, Illinois

Crescent City, Illinois

Jackass Flat (Nevada) January 9, 1964

- Unconfined H₂-air explosion
- Test to measure acoustic noise due to high flow rate hydrogen
- 1000 kg H₂ discharged from vertical rocket nozzle at 23 MPa in 30 seconds
- Discharge rate uniformly increased to 55 kg/s, maintained for 10 seconds then reduced to zero
- Ignition occurs 26 seconds after discharge begins

Jackass Flat (Nevada) January 9, 1964

- No pressure wave detected in near field less than 0.8 km
- Explosion heard 3.2 km away
- Wide spread minor damage near hydrogen discharge, but superficial
- Estimate 10 kg of H₂ involved in the explosion
- TNT equivalent of 8%

Polysar (April 19, 1984)

- Unconfined H₂-air explosion
- Rapid release of H₂ from a ruptured gasket of a Worthington Compressor at 600psi
- 10-20 seconds delay before ignition
- Three fatalities
- Extensive major structural damage in the near field
- Glass and minor structural damage up to 1 km
- Detonation occurred in near field
- Damage compatible to detonation of about 0.1 kg H₂-air cloud

China Light and Power Cast Peak Generating Station (August 28, 1992)

- Confined explosion
- Explosion in hydrogen receiver
- Production of hydrogen by electrolysis
- Low pressure compressor: 500 kPa
- High pressure compressor: 13.6 MPa
- Two hydrogen receivers: 8.68 m long x 1.12 m diameter
- Hydrogen plant shut down August 24 to 26
- Hydrogen plant resume to supply H₂ to receivers @ 06:30 on August 27

China Light and Power Cast Peak Generating Station (August 28, 1992)

- Pressure at receiver: 6.9 MPa
- August 28 from 00:30 to 02:00 gas from receiver supplied to generator
- Hydrogen purity in generator dropped to 85%
- Receiver disconnected from generator at 02:30; H₂ supplied from bottles
- Sampling indicated hydrogen purity in receivers about 95%
- Receiver #1 reconnected to generator to supply H₂ to generator at 09:45 on August 28

China Light and Power Cast Peak Generating Station (August 28, 1992)

- A drop in H₂ purity in generators noted immediately
- Both receivers exploded at 10:05
- Two fatalities; 18 injured by fragments
- Extensive blast damage ~ 100 m radius
- TNT equivalent 275 kg
- Conclusion: all the gas supplied to the receiver over a 20 hour period (from 06:30 on August 27 to 02:30 on August 28) was air!

Blainville, Quebec (March, 2000)

- Confined explosion
- Motor vehicle test center
- Tank with 350 psi natural gas filled with air to 3500 psi instead of nitrogen
- Explosion occur during pressure adjustment before crash test
- Extensive damage to car and building
- 3 workers killed

Fig. 4 The painted tank with a numbered grid for recovery of fragments

Top Views of the Inside of the Bottom Fragment (continued) c) d)

Conclusion from Accidents

- Rapid release in open atmosphere (Jackass Flat)
 - minor blast damages
- Rapid release in a congested area with equipment, structure etc. (Polysar)
 - severe blast damages, DDT
- Contamination of high pressure storage facility by air (China Light)
 - severe blast damages

Accident scenarios to avoid

- Rapid release in congested area (high density of equipment)
- Air contamination of high pressure hydrogen storage facilities
- Leakage of hydrogen into poorly vented enclosures

Explosion properties of hydrogen

- Equilibrium thermodynamics properties for hydrogen explosion well established
- Chemical kinetics of hydrogen oxidation sufficiently understood quantitatively (explosion limits, laminar flame propagation)
- Explosion parameters are also well established (flammability limit, ignition energy, quenching distance, etc.)

Explosion properties of hydrogen

- Detonation states are well known (Chapman-Jouguet detonation velocity, overpressure, etc.)
- Dynamic detonation parameters adequately known (initiation energy, detonability limit, critical diameter)
- Detonation sensitivity of high pressure H₂-air mixtures does not increase as other hydrocarbon fuels do
- Transition and onset of detonation (i.e. quantitative description of turbulent flame acceleration, condition for the onset of detonation) still not understood

Major unresolved problem

- Development of turbulent combustion models to describe high speed deflagrations with consideration of compressibility effects
- Quantitative theory for the onset of detonation

The Problem of the Transition from Deflagration to Detonation

Current Understanding and Outstanding Problems

Two Modes of Combustion

Deflagration

propagation via diffusion mechanism

Detonation

Propagation via shock ignition

Slowest Burning Rate

Laminar Flame

molecular diffusion of heat and species

$$S \sim \sqrt{\frac{\alpha}{t_c}} \sim \sqrt{\frac{10^{-5}}{10^{-3}}} \approx 10^{-1} \,\text{m/s}$$

Flame Thickness:

$$\delta \sim \sqrt{\alpha t_c} \sim \sqrt{10^{-5} \cdot 10^{-3}} \approx 10^{-1} \,\mathrm{mm}$$

Fastest Burning Rate

CJ Detonation

zone

Ignition by adiabatic shock compression

Self-Propagating Deflagration Waves

- are unstable
- accelerate to some critical state and undergo transition to detonation waves

Urtiew & Oppenheim (1966)

 $H_2 + 0.5 O_2$ @ $P_0 = 1 \text{ atm}$ $V_{CJ} = 2837 \text{ m/s}$

- initial phase of flame acceleration involves numerous instability mechanisms
- not possible to characterize the flame acceleration phase by a single reproducible parameter like the <u>run-up distance</u>

- bypass the initial phase and look at the final phase of the onset of detonation
- determine the critical deflagration speed prior to onset of detonation
- use obstacles to get to critical speed rapidly

 systematic studies of DDT in rough tubes began at McGill in the late 1970's

tubes from 5 cm to 2.5 m were used

 obstacles were in the form of orifice plates, cylindrical rods, Shchelkin spirals, etc.

TUBE DIAMETER D=15cm, OBSTACLE PITCH P=15cm

BLOCKAGE RATIO BR=1-($\frac{d}{D}$)=0-39

Three-dimensional view of the Tube-Obstacle Assembly

DISTANCE ALONG OBSTACLE FIELD - meters

time

Findings from Rough Tube Experiments

- rapid acceleration to a quasi-steady velocity
- steady velocity is not too sensitive to tube diameter or obstacle configuration
- distinct transition from steady velocity to a higher value when mixture sensitivity varies

Three Distinct Regimes

- turbulent deflagration < 100 m/s
- sonic regime

deflagration speed ~ sound speed of products

 $\sim 1000 \text{ m/s} (\sim \frac{1}{2} \text{ V}_{\text{CJ}})$

- quasi-detonation or detonation
 - ~ V_{CJ} with large velocity deficit

Three parameters that can characterize the condition for onset of detonation:

- 1. critical deflagration speed
- 2. tube diameter
- 3. sensitivity of mixture

Table 1 Transition within obstacle field

Mixture	D, em	d, mm	λ , som	λ/d
4.75% C ₂ H ₂ -air	5	37.4	19.8	0.51
22% H ₂ -air	5	37.4	30.7	0.82
47.5% H ₂ -air	5	37.4	41.2	1.10
6% C ₂ H ₄ -air	5 5	37.4	37.8	1.01
9% C ₂ H ₄ -air	5	37.4	30.1	0.81
4\$ C2H2-air	15	114.0	58.3	0.51
3.25% C ₃ H ₈ -air	15	114.0	112.0	0.98
5.5% C ₃ H ₈ -air	15	114.0	116.0	1.02
	No Tr	ansition		
Mixture	D,cm	d,mm	λ min, mm	λ/d
C ₃ H ₈ -air	5	37.4	52.5	1.40
CR ₄ -air	5 5	37.4	300.0	8.02
CH _u -air	15	114.0	300.0	2.63

Table 2	Transition	in	smooth-walled	tube
---------	------------	----	---------------	------

Mixture	D, em	λ , rom	λ / D	
4% C ₂ H ₂ -air	5	58.3	1.18	
5% C ₂ H ₄ -air	5	65.1	1.32	
10% CoHu-air	5	39.7	0.80	
45 Callo-air	5	52.2	1.06	
5% CaHo-air	5	59.0	1.19	
10% C ₂ H ₄ -air 4% C ₃ H ₈ -air 5% C ₃ H ₈ -air 20% H ₂ -air	5	55.4	1.12	
51% H ₂ -air	5	52.5	1.06	

Critical Deflagration Speed for Onset of Detonation

$$\sim \frac{1}{2} V_{CJ}$$

~ sound speed of products

Eder & Brehm (2001)

Vasil'ev (2006)

Mixture	c_0 , m/sec	P_{CJ}	σ_{CJ}	P_V	σ_P	P_{def}	$\sigma_{ m def}$	π^*	${ m M_{inc}}$	$M_{\rm ref}$	M_0
$C_2H_2 + 2.5O_2$	330	33.83	1.84	17.07	0.07	0.48	0.036	18.2	3.95	2.1	7.34
C_2H_2 + air (stoichiometric ratio)	347	19.11	1.82	9.77	0.12	0.48	0.062	10.6	3.05	1.8	5.38
$C_2H_4 + 3O_2$	328	33.43	1.85	16.87	0.07	0.48	0.036	17.8			7.24
C_2H_4 + air (stoichiometric ratio)	347	18.35	1.81	9.38	0.12	0.48	0.064	10.1	2.95	1.8	5.26
$2H_2 + O_2$	537	18.79	1.84	9.59	0.12	0.49	0.062	10.4	3	1.8	5.28
H_2 + air (stoichiometric ratio)	409	15.58	1.8	8	0.15	0.48	0.076	9	2.8	1.75	4.82
$CH_4 + 2O_2$	355	29.32	1.85	14.84	0.08	0.49	0.04	15.8	3.65	2.05	6.73
$\mathrm{CH_4}$ + air (stoichiometric ratio)	354	17.17	1.81	8.79	0.13	0.47	0.069	9.6	2.9	1.75	5.09

(confined) $0.33 \le M_{crit} \le 0.56 M_{CJ}$ (unconfined)

Mechanism of Onset of Detonation in Rough (Obstacle-Filled) Tubes

- turbulence from obstacles
- pressure waves

10cm

Two Modes of Onset of Detonation

- unstable mixture: local explosion, SWACER mechanism evidenced by formation of retonation waves
- progressive wave amplification resonant coupling with turbulent reaction zone

- detonation mechanism is resonant coupling between transverse pressure waves and chemical reactions
- transition means setting up the conditions for the resonant coupling to occur

 $C_2H_2 + 9.5O_2$, 5.5kPa

 $C_2H_2 + 2.5O_2 + 10.5Ar$, 5kPa

- turbulent combustion brings the deflagration to maximum speed; Chapman-Jouguet deflagration ~½ V_{CJ}
- transition to detonation requires the resonant coupling between transverse pressure fluctuations and the chemical reactions

- Chapman-Jouguet deflagration speed is not governed by reaction rate (hence turbulence)
- turbulent combustion rate must be fast enough to pressurize reaction zone
- gasdynamic expansion drives the deflagration like a CJ detonation
- hence, sound speed energetic parameters dominate and not turbulence

Outstanding Problems in DDT

- quantify the pre-detonation state (thermodynamic, turbulence, chemical kinetics)
- theory for the development of local explosions centers from hydrodynamic fluctuations
- condition for rapid amplification of pressure waves (SWACER)